A Fascinating problem

If 4 18 1 = 687194 a 6735 4^{18}-1 = \overline{ 687194a6735} then a a equals what ?


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

We have , ϕ ( 9 ) = 9 ( 1 1 3 ) = 6 , ϕ ( n ) is the Euler totient function. Since 4 and 9 are coprime by Euler’s theorem we have, 4 ϕ ( 9 ) 1 ( m o d 9 ) 4 6 1 ( m o d 9 ) 4 18 1 0 ( m o d 9 ) Sum of digits of 687194 a 6735 is divisible by 9. 56 + a 0 ( m o d 9 ) a = 7 \begin{aligned} \text{We have ,}\\ \phi(9)&=9(1-\dfrac{1}{3})=6, \hspace{4mm}\color{#3D99F6}\phi(n) \text{ is the Euler totient function.}\\ \text{Since } 4 &\text{ and } 9 \text{ are coprime by Euler's theorem we have,}\\ 4^{\phi(9)}&\equiv1\pmod{9}\\ 4^6&\equiv 1\pmod{9}\\ \implies 4^{18}-1 &\equiv0 \pmod {9}\\\\ \implies \text{Sum of digits of }&\overline{ 687194a6735} \text{ is divisible by }9. \\ \implies 56+a &\equiv 0\pmod{9}\\ \implies a&=\color{#EC7300}\boxed{\color{#333333}7}\end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...