Let F n be the n th Fibonacci number, where F 1 = 1 , F 2 = 1 and F n + 1 = F n + F n − 1 , for n ≥ 2 . Evaluate the sum n = 2 ∑ ∞ F n + 1 F n − 1 F n .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Similar solution with @Santi Spadaro 's
S = n = 2 ∑ ∞ F n + 1 F n − 1 F n = n = 2 ∑ ∞ ( F n + F n − 1 ) F n − 1 F n = n = 2 ∑ ∞ ( F n − 1 1 − F n + F n − 1 1 ) = n = 2 ∑ ∞ ( F n − 1 1 − F n + 1 1 ) = n = 1 ∑ ∞ ( F n 1 − F n + 2 1 ) = F 1 1 − F 3 1 + F 2 1 − F 4 1 + F 3 1 − F 5 1 + F 4 1 − F 6 1 + ⋯ = F 1 1 − F 3 1 + F 2 1 − F 4 1 + F 3 1 − F 5 1 + F 4 1 − F 6 1 + ⋯ = F 1 1 + F 2 1 = 2 Note that F k = F k − 1 + F k − 2
Problem Loading...
Note Loading...
Set Loading...
Using the definition of the Fibonacci sequence we see that: F n = F n + 1 − F n − 1 . We can use this information to turn the series of the problem into a telescoping series.
∑ n = 2 ∞ F n + 1 ⋅ F n − 1 F n = ∑ n = 2 ∞ F n + 1 ⋅ F n − 1 F n + 1 − F n − 1 = ∑ n = 2 ∞ ( F n − 1 1 − F n + 1 1 ) = lim N → ∞ ∑ n = 2 N ( F n − 1 1 − F n + 1 1 ) =
= lim N → ∞ ( F 1 1 − F 3 1 + F 2 1 − F 4 1 + F 3 1 − F 5 1 + . . . + F N − 2 1 − F N 1 + F N − 1 1 − F N + 1 1 ) = lim N → ∞ ( F 1 1 + F 2 1 − F N 1 − F N + 1 1 ) = F 1 1 + F 2 1 − 0 − 0 = 1 + 1 = 2