A fine summation!

Calculus Level 4

2 0 1 + tan 2 0 x + 2 1 1 + tan 2 1 x + 2 2 1 + tan 2 2 x + + 2 n 1 + tan 2 n x + \dfrac{2^0}{1 + \tan^{2^0} x} + \dfrac{2^1}{1 + \tan^{2^1} x} + \dfrac{2^2} {1 + \tan^{2^2} x} + \cdots + \dfrac {2^n}{1 + \tan^{2^n} x } + \cdots

Evaluate the series above for x = π 3 x = \dfrac \pi3 .


The answer is 1.366.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let me denote the above summation by S S

now adding 1 1 t a n x \frac{1}{1-tanx} to both sides .

S S + 1 1 t a n x \frac{1}{1-tanx} = 1 1 t a n x \frac{1}{1-tanx} + 1 1 + t a n x \frac{1}{1+tanx} + 2 1 + t a n 2 x \frac{2}{1+tan^2x} + ...

S S + 1 1 t a n x \frac{1}{1-tanx} = 2 1 t a n 2 x \frac{2}{1-tan^2x} + 2 1 + t a n 2 x \frac{2}{1+tan^2x} + 4 1 + t a n 4 x \frac{4}{1+tan^4x} +...

S S + 1 1 t a n x \frac{1}{1-tanx} = 4 1 t a n 4 x \frac{4}{1-tan^4x} + 4 1 + t a n 4 x \frac{4}{1+tan^4x} + ...

And so on the r.h.s of the sum will get merging.

Thus S S = 1 1 t a n x \frac{-1}{1-tanx} = 1 t a n x 1 \frac{1}{tanx-1}

Now putting x x = π 3 \frac{\pi}{3}

we get S S = 1 3 1 \frac{1}{\sqrt3 -1}

Kushal Dey
May 11, 2021

2/(1-x²)-1/(1-x)=1/(1+x)
4/(1-x⁴)-2/(1-x²)=2/(1+x²)
......
Adding all equations,
Lt n->infinity 2ⁿ/(1-x^(2ⁿ))-1/(1-x)=1/(1+x)....
Note that limit in lhs will be finite only if |x|>1.
We have to put x=tan(π/3) so we're good to go. Thus value of the series is 1/(sqrt(3)-1)
=(sqrt(3)+1)/2.



0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...