A finite series-2

Geometry Level 4

tan [ n = 1 2021 tan 1 ( 1 x 2 + x + 1 ) ] = m n \tan\left [ \sum_{n=1}^{2021} \tan^{-1} \left (\frac{1}{x^2+x+1} \right ) \right ]=\frac{m}{n}

m m and n n are coprime positive integers satisfying the equation above. Find m n . m-n.


The answer is -2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rafsan Rcc
May 11, 2021

Dwaipayan Shikari
May 12, 2021

x = 1 n tan 1 ( 1 x 2 + x + 1 ) = x = 1 n tan 1 ( x + 1 x 1 + x ( 1 + x ) ) = x = 1 n ( tan 1 ( x + 1 ) tan 1 ( x ) ) \displaystyle\small\sum_{x=1}^n \tan^{-1}\left(\dfrac{1}{x^2+x+1}\right) = \sum_{x=1}^n \tan^{-1}\left(\dfrac{x+1-x}{1+x(1+x)} \right)= \sum_{x=1}^n (\tan^{-1}(x+1)-\tan^{-1}(x))

x = 1 n ( tan 1 ( x + 1 ) tan 1 ( x ) ) = tan 1 ( 2 ) tan 1 ( 1 ) + tan 1 ( 3 ) + tan 1 ( n + 1 ) tan 1 ( n ) \displaystyle\small\sum_{x=1}^n (\tan^{-1}(x+1)-\tan^{-1}(x)) = \tan^{-1}(2)-\tan^{-1}(1)+\tan^{-1}(3)-\cdots+ \tan^{-1}(n+1)-\tan ^{-1}(n) = tan 1 ( n + 1 ) tan 1 ( 1 ) = tan 1 ( n n + 2 ) \displaystyle=\tan^{-1}(n+1) -\tan^{-1}(1) = \tan^{-1}\left(\dfrac{n}{n+2}\right)

Here n = 2021 n=2021 , so therefore sum is tan 1 ( 2021 2023 ) \displaystyle \tan^{-1}(\dfrac{2021}{2023})

So tan ( tan 1 ( 2021 2023 ) ) = 2021 2023 \tan\left(\tan^{-1}(\dfrac{2021}{2023})\right) = \dfrac{2021}{2023}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...