A function of two variables

Calculus Level 3

A function f f is defined as f ( m , n ) = 0 m n y n m e x n + 1 d x d y \displaystyle f(m,n) = \int_0^{m^n} \int_{\sqrt[n]{y}}^m e^{x^{n+1}} dxdy .

If f ( 5 , 6 ) = 1 a ( e b c d ) \displaystyle f(5,6) = \dfrac{1}{a} \left( e^{b^c} - d \right) , where a , b , c , d Z + a,b,c,d \in \mathbb{Z^+} . Find a + b + c + d a+b+c+d .


The answer is 20.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Akeel Howell
Dec 17, 2017

We have that f ( m , n ) = 0 m n y n m e x n + 1 d x d y \displaystyle f(m,n) = \int_0^{m^n} \int_{\sqrt[n]{y}}^m e^{x^{n+1}} dxdy .

Here, we can set y = x n 0 m 0 x n e x n + 1 d y d x = 0 m [ y e x n + 1 ] 0 x n d x = 0 m x n e x n + 1 d x = [ 1 n + 1 e x n + 1 ] 0 m = 1 n + 1 ( e m n + 1 1 ) \displaystyle y = x^n \implies \int_0^m \int_0^{x^n} e^{x^{n+1}} dydx \\ \displaystyle = \int_0^m \left[ y \cdot e^{x^{n+1}} \right]_0^{x^n} dx = \int_0^m x^n e^{x^{n+1}} dx \\ \displaystyle = \left[ \dfrac{1}{n+1} e^{x^{n+1}} \right]_0^m = \dfrac{1}{n+1} \left( e^{m^{n+1}} - 1 \right) .

Hence, f ( 5 , 6 ) = 1 7 ( e 5 7 1 ) a + b + c + d = 20 f(5,6) = \dfrac{1}{7} \left( e^{5^7} - 1 \right) \implies a+b+c+d = \boxed{20} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...