A function dissimiliarity

Algebra Level 4

Find the number of integral values of x x satisfying the equation sgn ( 15 1 + x 2 ) = 1 + { 2 x } \text{sgn} \left( \left \lfloor \dfrac{15}{1+x^2} \right \rfloor \right) = \lfloor 1 + \{2x \} \rfloor

Notations:

  • \lfloor \cdot \rfloor denotes the floor function .

  • { } \{ \cdot \} denotes the fractional part function .

  • sgn ( ) \text{sgn} (\cdot) denotes the signum function , if sgn ( x ) = { 1 , if x < 0 0 , if x = 0 1 , if x > 0 \text{sgn}(x) = \begin{cases} -1, \text{ if } x < 0 \\ 0, \text{ if } x = 0 \\ 1, \text{ if } x > 0 \end{cases} .

5 7 15 16

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

X X
Jun 28, 2020

Since x x is an integer, { 2 x } = 0 \{2x\}=0 , hence 1 + { 2 x } = 1 = sgn ( 15 1 + x 2 ) \lfloor 1+\{2x\}\rfloor=1=\text{sgn}\left(\lfloor{\dfrac{15}{1+x^2}}\rfloor\right)

This means 15 1 + x 2 > 0 \lfloor{\dfrac{15}{1+x^2}}\rfloor>0 , which is equivalent to 15 1 + x 2 1 \dfrac{15}{1+x^2}\geq1

14 x 2 14\geq x^2 , so there are 7 possible integers (from -3 to 3) satisfying the condition.

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...