A Gaussian Revolution

Calculus Level 4

Find the volume comprised between the function z ( r , θ ) = e r 2 z(r,\theta)=e^{-r^2} and the x y xy plane.


Bonus : Use this result to find the value of e x 2 d x \displaystyle \int_{-\infty}^{\infty}e^{-x^2}\,dx


The answer is 3.14159.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

K T
May 8, 2019

The given function is positive definite, so the volume is just V = x y p l a n e e r 2 d S V=\int_{xy-plane}{e^{-r^2}}dS .

V = 0 2 π 0 r e r 2 d r d θ V=\int_0^{2\pi}{\int_0^{\infty}{r e^{-r^2}dr}d\theta}

For those wondering where the factor r comes from, it always appears when we swich to polar coordinates, it is called the Jacobian determinant for polar coordinates. If we have the coordinate mapping

{ x = r cos θ y = r sin θ \left\{ \begin{array}{ll} x=r\cos \theta \\ y=r\sin \theta \end{array} \right. , then J = [ x r x θ y r y θ ] J=\begin{bmatrix}  \frac {\partial x}{\partial r} & \frac {\partial x}{\partial \theta} \\ \frac {\partial y}{\partial r} & \frac {\partial y}{\partial \theta}  \end{bmatrix} = [ cos θ r sin θ sin θ r cos θ ] =\begin{bmatrix}  \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{bmatrix} and det J = r cos 2 θ + r sin 2 θ = r \det J = r\cos^2 \theta+r\sin^2 \theta=r .

V = 0 2 π d θ 0 r e r 2 d r V=\int_0^{2\pi}{d\theta} \cdot \int_0^{\infty}{r e^{-r^2}dr}

= 2 π 0 d 1 2 e r 2 =2\pi \cdot \int_0^{\infty}{d -\frac{1}{2}e^{-r^2}}

= 2 π ( 1 2 e ( 1 2 e 0 ) ) = 2\pi \cdot (-\frac{1}{2}e^{-\infty}-(-\frac{1}{2}e^{0}))

= 2 π ( 0 + 1 2 ) =2\pi \cdot(0+\frac{1}{2})

= π =\pi

Gabriel Chacón
May 3, 2019

The volume asked for is very straightforward using cylindrical coordinates and has a value of π \pi (see @Tom Engelsman 's solution.)

The result can be used to compute e x 2 d x \displaystyle \int_{-\infty}^{\infty}e^{-x^2}\,dx . We need to express the volume integral using cartesian coordinates:

e ( x 2 + y 2 ) d x d y = e x 2 d x e y 2 d y = ( e x 2 d x ) 2 = π e x 2 d x = π \displaystyle \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-(x^2+y^2)}\,dx \,dy= \int_{-\infty}^{\infty}e^{-x^2}\,dx \cdot \int_{-\infty}^{\infty}e^{-y^2}\,dy=\left( \int_{-\infty}^{\infty}e^{-x^2}\,dx \right)^2=\pi \implies \displaystyle \int_{-\infty}^{\infty}e^{-x^2}\,dx=\sqrt{\pi}

Tom Engelsman
May 3, 2019

The volume in question can be computed via the double integral in cylindrical coordinates:

V = 0 2 π 0 e r 2 r d r d θ = π . V = \int_{0}^{2\pi} \int_{0}^{\infty} e^{-r^2} r dr d\theta = \boxed{\pi}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...