A general binomial

( 1 + x ) n = r = 0 n ( n r ) x r {(1+x)}^n = \displaystyle \sum_{r=0}^n \dbinom nr x^r

Given the binomial expansion above, evaluate the value of

2 [ ( n 0 ) + ( n 3 ) + ( n 6 ) + + ( n n ) ] + ( 1 + ω ) [ ( n 1 ) + ( n 4 ) + ( n 7 ) + + ( n n 2 ) ] + ( 1 + ω 2 ) [ ( n 2 ) + ( n 5 ) + ( n 8 ) + + ( n n 1 ) ] 2 \left[ \dbinom n0 + \dbinom n3 + \dbinom n6 + \cdots + \dbinom nn \right] \\ + (1 + \omega) \left[ \dbinom n1 + \dbinom n4 + \dbinom n7 + \cdots + \dbinom{n}{n-2} \right] \\ + (1 + \omega^2) \left[ \dbinom n2 + \dbinom n5 + \dbinom n8 + \cdots + \dbinom{n}{n-1} \right]

where

  • ω \omega denotes the non-real cube root of unity.
  • n n in an odd integral multiple of 3.
  • ( M N ) = M ! N ! ( M N ) ! \dbinom MN = \dfrac {M!}{N! (M-N)!} denotes the binomial coefficient .
2 n 2^n 2 n + 1 2^n +1 0 0 2 n 1 2^n -1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tapas Mazumdar
Jan 29, 2017

When x = ω x=\omega

( 1 + ω ) n = ( n 0 ) + ( n 1 ) ω + ( n 2 ) ω 2 + . . . + ( n n ) ω n {(1+\omega)}^n = \dbinom n0 + \dbinom n1 \omega + \dbinom n2 \omega^2 + ... + \dbinom nn \omega^n

When x = 1 x=1

( 1 + 1 ) n = ( n 0 ) + ( n 1 ) + ( n 2 ) + . . . + ( n n ) {(1+1)}^n = \dbinom n0 + \dbinom n1 + \dbinom n2 + ... + \dbinom nn

Adding the above two equation gives

( 1 + ω ) n + 2 n = 2 ( n 0 ) + ( 1 + ω ) ( n 1 ) + ( 1 + ω 2 ) ( n 2 ) + 2 ( n 3 ) + ( 1 + ω ) ( n 4 ) + ( 1 + ω 2 ) ( n 5 ) + 2 ( n 6 ) + . . . + ( 1 + ω ) ( n n 2 ) + ( 1 + ω 2 ) ( n n 1 ) + 2 ( n n ) As 1 + ω 3 k = 2 \begin{aligned} {(1+\omega)}^n + 2^n &=& 2 \dbinom n0 + (1+\omega) \dbinom n1 + (1+\omega^2) \dbinom n2 + 2 \dbinom n3 + \\ \\ & & (1+\omega) \dbinom n4 + (1+\omega^2) \dbinom n5 + 2 \dbinom n6 + ... + \\ \\ & & (1+\omega) \dbinom{n}{n-2} + (1+\omega^2) \dbinom{n}{n-1} + 2 \dbinom nn \qquad \qquad \small \color{#3D99F6}{\text{As } 1+\omega^{3k} = 2} \end{aligned} \\

2 n + ( ω 2 ) n = 2 [ ( n 0 ) + ( n 3 ) + ( n 6 ) + . . . + ( n n ) ] + ( 1 + ω ) [ ( n 1 ) + ( n 4 ) + ( n 7 ) + . . . + ( n n 2 ) ] + ( 1 + ω 2 ) [ ( n 2 ) + ( n 5 ) + ( n 8 ) + . . . + ( n n 1 ) ] 2 n 1 = 2 [ ( n 0 ) + ( n 3 ) + ( n 6 ) + . . . + ( n n ) ] + ( 1 + ω ) [ ( n 1 ) + ( n 4 ) + ( n 7 ) + . . . + ( n n 2 ) ] + ( 1 + ω 2 ) [ ( n 2 ) + ( n 5 ) + ( n 8 ) + . . . + ( n n 1 ) ] As n is an odd integral multiple of 3 so ( ω 2 ) n = 1 \\ \begin{aligned} \therefore \qquad & 2^n + {(-\omega^2)}^n &= 2 \left[ \dbinom n0 + \dbinom n3 + \dbinom n6 + ... + \dbinom nn \right] \\ \\ & & + (1 + \omega) \left[ \dbinom n1 + \dbinom n4 + \dbinom n7 + ... + \dbinom{n}{n-2} \right] \\ \\ & & + (1 + \omega^2) \left[ \dbinom n2 + \dbinom n5 + \dbinom n8 + ... + \dbinom{n}{n-1} \right] \\ \\ \\ \\ \implies \qquad & \boxed{2^n - 1} &= 2 \left[ \dbinom n0 + \dbinom n3 + \dbinom n6 + ... + \dbinom nn \right] \\ \\ & & + (1 + \omega) \left[ \dbinom n1 + \dbinom n4 + \dbinom n7 + ... + \dbinom{n}{n-2} \right] \\ \\ & & + (1 + \omega^2) \left[ \dbinom n2 + \dbinom n5 + \dbinom n8 + ... + \dbinom{n}{n-1} \right] \qquad \qquad \small \color{#3D99F6}{\text{As } n \text{ is an odd integral multiple of } 3 \text{ so } {(-\omega^2)}^n = 1} \end{aligned}

Doesn't it also matter whether n is even or odd? Or am I missing something? You specify that n is a multiple of 3, but not that it's odd. Looks to me as though you should get 2^n + 1 if n were even.

Steve McMath - 4 years, 4 months ago

Log in to reply

Oh yes, I see now. Thanks for pointing my mistake. I've made necessary corrections.

Tapas Mazumdar - 4 years, 4 months ago

This solution is wrong. 1 + ω = ω 2 1 + \omega = -\omega^2 , so the correct simplification is ( 1 + ω ) n + 2 n = ( ω 2 ) n + 2 n (1 + \omega)^n + 2^n = (-\omega^2)^n + 2^n . Then, ω n = 1 \omega^n = 1 , so the answer is 2 n + ( 1 ) n 2^n + (-1)^n .

EDIT: The problem originally just said that n n is a multiple of 3. With this change, we can now simplify ( 1 ) n = 1 (-1)^n = -1 because n n is odd, thus giving the given answer.

Ivan Koswara - 4 years, 4 months ago

Log in to reply

Oh yes, I see now. Thanks for pointing my mistake. I've made necessary corrections.

Tapas Mazumdar - 4 years, 4 months ago

Classic JEE solution :P, put n=3

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...