∫ 0 ∞ e 7 x − 1 x 6 d x
If the above integral has a closed form of a c Γ ( a ) ζ ( b ) , find 2 a + b + c .
Details and Assumptions :
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Lets prove the General result
∫ 0 ∞ e b x − 1 x a − 1 d x = b a ( − 1 ) a − 1 ∫ 0 1 k = 0 ∑ ∞ y k ln a − 1 y d y
= b a ( − 1 ) a − 1 k = 0 ∑ ∞ ∫ 0 1 y k ln a − 1 y d y
= b a ( − 1 ) a − 1 k = 0 ∑ ∞ ( k + 1 ) a ( − 1 ) a − 1 ( a − 1 ) !
= b a ( a − 1 ) ! k = 1 ∑ ∞ k a 1
= b a Γ ( a ) × ζ ( a )
∴ ∫ 0 ∞ e 7 x − 1 x 6 d x = 7 7 Γ ( 7 ) × ζ ( 7 ) ⟹ 2 a + b + c = 2 8
The answer can also be expressed as 7 8 Γ ( 8 ) ζ ( 7 ) , which leads to an answer of 30.
Log in to reply
Thanks, I've updated the question.
The given question can be rearranged in terms of the riemann zeta function which is
\zeta (s)={\frac {1}{\Gamma (s)}}\int _{0}^{\infty }{\frac {x^{s-1}}{e^{x}-1}}\mathrm {d} x
And can be rearranged as : {\displaystyle \Gamma (z)=\int _{0}^{\infty }x^{z-1}e^{-x}\,\mathrm {d} x.}\int _{0}^{\infty }{\frac {x^{s-1}}{e^{x}-1}}\mathrm {d} x}/ a^a
a^a=a^c a=c= 7 because gamma (z-1)=6 and z=7
b=6 because the integral clearly states that X^(s-1) and since s-1=6, s=7
Thus
2a+b+c=14+7+7=28
Problem Loading...
Note Loading...
Set Loading...
For those who don't know the "direct series transformations" I = ∫ 0 ∞ e a x − 1 x n d x I = ∫ 0 ∞ 1 − e − a x x n e − a x d x N o w , 1 − e − a x e − a x = e − a x + e − 2 a x + ⋯ ∞ = r = 1 ∑ ∞ e − a r x I = r = 1 ∑ ∞ ∫ 0 ∞ x n e − a r x d x S e t a r x = t ; a r d x = d t I = r = 1 ∑ ∞ ( a r ) n + 1 1 ∫ 0 ∞ t n e − t d t I = a n + 1 1 ζ ( n + 1 ) Γ ( n + 1 )