A General Result

Calculus Level 5

0 x 6 e 7 x 1 d x \displaystyle\int_0^{\infty} \dfrac{x^6}{e^{7x}-1} \ dx

If the above integral has a closed form of Γ ( a ) ζ ( b ) a c \dfrac{\Gamma{(a) } \zeta{(b) }} {a^c} , find 2 a + b + c 2a+b+c .

Details and Assumptions :

  • a , b , c , a, b, c, are all positive integers and they may or may not be different.
100% original.


The answer is 28.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Kunal Gupta
May 9, 2015

For those who don't know the "direct series transformations" I = 0 x n d x e a x 1 I = 0 x n e a x d x 1 e a x N o w , e a x 1 e a x = e a x + e 2 a x + = r = 1 e a r x I = r = 1 0 x n e a r x d x S e t a r x = t ; a r d x = d t I = r = 1 1 ( a r ) n + 1 0 t n e t d t I = 1 a n + 1 ζ ( n + 1 ) Γ ( n + 1 ) I= \displaystyle \int_{0}^{\infty} \dfrac{x^{n}\text{d}x}{e^{ax}-1} \\ I= \displaystyle \int_{0}^{\infty} \dfrac{x^{n}e^{-ax}dx}{1-e^{-ax}} \\ Now, \dfrac{e^{-ax}}{1-e^{-ax}} = e^{-ax} +e^{-2ax} +\cdots \infty \\ = \displaystyle \sum_{r=1}^{\infty}e^{-arx} \\ I= \displaystyle \sum_{r=1}^{\infty} \displaystyle \int_{0}^{\infty} x^{n}e^{-arx}dx \\ Set\quad arx=t; ar\text{d}x=dt \\ I=\displaystyle \sum_{r=1}^{\infty} \dfrac{1}{(ar)^{n+1}}\displaystyle \int_{0}^{\infty} t^{n}e^{-t}dt \\ \\ I=\dfrac{1}{a^{n+1}}\zeta(n+1)\Gamma(n+1)

Parth Lohomi
May 9, 2015

Lets prove the General result

0 x a 1 e b x 1 d x = ( 1 ) a 1 b a 0 1 k = 0 y k ln a 1 y d y \displaystyle\int_0^{\infty}\dfrac{x^{a-1}}{e^{bx}-1}\ dx = \dfrac{(-1)^{a-1}}{b^a}\displaystyle\int_0^1 \displaystyle\sum_{k=0}^{\infty} y^k \ln^{a-1} y \ dy

= ( 1 ) a 1 b a k = 0 0 1 y k ln a 1 y d y =\dfrac{(-1)^{a-1}}{b^a}\displaystyle\sum_{k=0}^{\infty} \displaystyle\int_0^1 y^k \ln^{a-1} y\ dy

= ( 1 ) a 1 b a k = 0 ( 1 ) a 1 ( a 1 ) ! ( k + 1 ) a = \dfrac{(-1)^{a-1}}{b^a}\displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^{a-1} (a-1)!}{(k+1)^a}

= ( a 1 ) ! b a k = 1 1 k a =\dfrac{(a-1)!}{b^a}\displaystyle\sum_{k=1}^{\infty} \dfrac{1}{k^a}

= Γ ( a ) × ζ ( a ) b a =\boxed{\dfrac{\Gamma{(a)} \times \zeta {(a)}} {b^a}}

\therefore 0 x 6 e 7 x 1 d x = Γ ( 7 ) × ζ ( 7 ) 7 7 2 a + b + c = 28 \displaystyle\int_0^{\infty} \dfrac{x^6}{e^{7x} - 1}\ dx =\dfrac{\Gamma{(7)} \times \zeta {(7)}} {7^7}\implies 2a+b+c=28

The answer can also be expressed as Γ ( 8 ) ζ ( 7 ) 7 8 , \frac{\Gamma(8) \zeta(7)}{7^8}, which leads to an answer of 30.

Jon Haussmann - 6 years, 1 month ago

Log in to reply

Thanks, I've updated the question.

Brilliant Mathematics Staff - 6 years, 1 month ago
Aaditya Lanke
Dec 21, 2016

The given question can be rearranged in terms of the riemann zeta function which is

\zeta (s)={\frac {1}{\Gamma (s)}}\int _{0}^{\infty }{\frac {x^{s-1}}{e^{x}-1}}\mathrm {d} x

And can be rearranged as : {\displaystyle \Gamma (z)=\int _{0}^{\infty }x^{z-1}e^{-x}\,\mathrm {d} x.}\int _{0}^{\infty }{\frac {x^{s-1}}{e^{x}-1}}\mathrm {d} x}/ a^a

a^a=a^c a=c= 7 because gamma (z-1)=6 and z=7

b=6 because the integral clearly states that X^(s-1) and since s-1=6, s=7

Thus

2a+b+c=14+7+7=28

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...