A geometrical enigma

Geometry Level 4

Find the ratio between the area of a square inscribed in a circle,and an equilateral triangle circumscribed about the same circle.

If the ratio is in the form a b \dfrac{\sqrt{{a}}}{{b}} , where a a and b b are positive integers with a a and b b as small as possible, find a + b {a}+{b} .


The answer is 21.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Rishabh Jain
Jan 27, 2016

s= 2 \sqrt2 r and a= 4 r sin 60 = 2 3 r 4r \sin60=2\sqrt3 r Hence required ratio= s 2 3 a 2 4 \dfrac{s^2}{\dfrac{\sqrt3 a^2}{4}} = 2 r 2 3 3 = 12 9 = \dfrac{2r^2}{3\sqrt3}=\dfrac{\sqrt{12}}{9} 12 + 9 = 21 \Large 12+9=\boxed{\color{#D61F06}{\boxed{21}}}

Area of regular polygon of n sides in an unit circumcircle = 1 2 n ( 1 2 ) S i n 2 π n . I n e q u i l a t e r a l Δ , C i r c u m r a d i u s = 2 I n r a d i u s . B u t i n t h e Δ , t h e c i r c l e i s I n c i r c l e . C i r c u m r a d i u s = 2 I n r a d i u s = 2 1 = 2 is the circumradius for the Δ . R e q u i r e d r a t i o = 1 2 4 ( 1 2 ) S i n 2 π 4 1 2 3 ( 2 2 ) S i n 2 π 3 = 12 9 = a b . a + b = 21. \text{Area of regular polygon of n sides in an unit circumcircle } =\frac12*n*(1^2)*Sin\dfrac{2\pi} n.\\ In ~ equilateral ~ \Delta, ~ Circumradius=2*Inradius. ~ But ~ in ~ the ~ \Delta, ~ the ~ circle ~ is ~ Incircle. \\ \therefore~Circumradius=2*Inradius=2*1=2 \text{ is the circumradius for the } \Delta.\\ Required ~ ratio ~\Large =\dfrac{ \frac12*4*(1^2)*Sin\dfrac{2\pi} 4}{\frac12*3*(2^2)*Sin\dfrac{2\pi} 3}=\dfrac{\sqrt{12}}9\\ =\dfrac a b. \therefore ~ a+b=21.

Let r to be the radius of the circle. \text{ r to be the radius of the circle.} .

Observe now Rishabh' picture, then the side of the square inscribed in the circle = 2 r Surface of the square = 2 r 2 \text{the side of the square inscribed in the circle} = \sqrt{2} \cdot r \Rightarrow \text{Surface of the square} = 2 \cdot r^2

Let's call l = side of the equilateral triangle l = \text{side of the equilateral triangle} and s = semiperimeter of the equilateral triangle s =\text{semiperimeter of the equilateral triangle} , then Surface of the equilateral triangle = 1 2 l 2 sin 60 º = 3 4 l 2 = r s = r 3 l 2 \text{ Surface of the equilateral triangle} = \frac{1}{2}\cdot l^2\cdot \sin 60º = \frac{\sqrt{3}}{4} \cdot l^2 = r \cdot s = r \cdot \frac{3l}{2} \Rightarrow l = 6 r 3 Surface of the equilateral triangle = 12 r 2 3 4 = 3 3 r 2 l = \frac{6r}{ \sqrt{3}} \Rightarrow \text{Surface of the equilateral triangle} = 12r^2 \frac{\sqrt{3}}{4} = \sqrt{3}\cdot 3r^2 Surface of the square Surface of the equilateral triangle = 2 r 2 3 3 r 2 = 2 3 9 = 12 9 . . . \frac{\text{Surface of the square}}{\text{Surface of the equilateral triangle}} = \frac{2r^2}{3\sqrt{3}r^2} = \frac{2\sqrt{3}}{9} = \frac{\sqrt{12}}{9}...

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...