A Geometry Problem.

Geometry Level 4

In the right A B C \triangle{ABC} above, A D = E C = x AD = EC = x , D E = x + 1 DE = x + 1 and m D B E = m B C A = α m\angle{DBE} = m\angle{BCA} = \alpha . Find the value of x x for which the area A D B E = x 2 1 A_{\triangle{DBE}} = x^2 - 1 .


The answer is 3.369924.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Nov 17, 2020

Since A D B A = x 2 1 A_{\triangle DBA} = x^2 - 1 , A B = 2 ( x 1 ) \implies AB = 2(x-1) so that A D B A = 1 2 A B D E = 1 2 2 ( x 1 ) ( x + 1 ) = x 2 1 A_{\triangle DBA} = \dfrac 12 AB \cdot DE = \dfrac 12 \cdot 2(x-1)(x+1) = x^2 -1 . The B D = A B 2 + A D 2 = ( 2 ( x 1 ) ) 2 + x 2 = 5 x 2 8 x + 4 BD = \sqrt{AB^2+AD^2} = \sqrt{(2(x-1))^2 + x^2} = \sqrt{5x^2 - 8x + 4} . Note that B D E \triangle BDE and B C D \triangle BCD are similar, then we have:

B D D E = C D B D 5 x 2 8 x + 4 x + 1 = 2 x + 1 5 x 2 8 x + 4 5 x 2 8 x + 4 = 2 x 2 + 3 x + 1 3 x 2 11 x + 3 = 0 x = { 11 + 85 6 3.369924076 11 85 6 0.29674259 \begin{aligned} \frac {BD}{DE} & = \frac {CD}{BD} \\ \frac {\sqrt{5x^2-8x+4}}{x+1} & = \frac {2x+1}{\sqrt{5x^2-8x+4}} \\ 5x^2-8x+4 & = 2x^2 + 3x + 1 \\ 3x^2 - 11x + 3 & = 0 \\ \implies x & = \begin{cases} \dfrac {11+\sqrt{85}}6 \approx 3.369924076 \\ \dfrac {11-\sqrt{85}}6 \approx 0.29674259 \end{cases} \end{aligned}

From A D B E = x 2 1 x > 1 A_{\triangle DBE} = x^2 -1 \implies x > 1 , therefore x 3.37 x \approx \boxed{3.37} .

Since A A D E = x 2 1 {{A}_{\vartriangle ADE}}={{x}^{2}}-1 , it follows that x > 1 x>1 .

Referring to the figure we have

y x = tan ( 2 α + β ) = tan α + tan ( α + β ) 1 tan α tan ( α + β ) = y 3 x + 1 + y 2 x + 1 1 y 2 ( 3 x + 1 ) ( 2 x + 1 ) \dfrac{y}{x}=\tan \left( 2\alpha +\beta \right)=\dfrac{\tan \alpha +\tan \left( \alpha +\beta \right)}{1-\tan \alpha \cdot \tan \left( \alpha +\beta \right)}=\dfrac{\dfrac{y}{3x+1}+\dfrac{y}{2x+1}}{1-\dfrac{{{y}^{2}}}{\left( 3x+1 \right)\left( 2x+1 \right)}}

Hence,

1 x = 1 3 x + 1 + 1 2 x + 1 1 y 2 ( 3 x + 1 ) ( 2 x + 1 ) y 2 = x 2 + 3 x + 1 y = x 2 + 3 x + 1 \dfrac{1}{x}=\dfrac{\dfrac{1}{3x+1}+\dfrac{1}{2x+1}}{1-\dfrac{{{y}^{2}}}{\left( 3x+1 \right)\left( 2x+1 \right)}}\Leftrightarrow {{y}^{2}}={{x}^{2}}+3x+1\Rightarrow y=\sqrt{{{x}^{2}}+3x+1} Now we have an equation for x x :

A A D E = x 2 1 1 2 y ( x + 1 ) = x 2 1 x 2 + 3 x + 1 ( x + 1 ) = 2 ( x 1 ) ( x + 1 ) x 2 + 3 x + 1 = 2 ( x 1 ) x 2 + 3 x + 1 = 4 x 2 8 x + 4 3 x 2 11 x + 3 = 0 x > 1 x = 11 + 85 6 3.3699 \begin{aligned} & {{A}_{\vartriangle ADE}}={{x}^{2}}-1\Leftrightarrow \dfrac{1}{2}y\cdot \left( x+1 \right)={{x}^{2}}-1 \\ & \Leftrightarrow \sqrt{{{x}^{2}}+3x+1}\cdot \left( x+1 \right)=2\left( x-1 \right)\left( x+1 \right) \\ & \Leftrightarrow \sqrt{{{x}^{2}}+3x+1}=2\left( x-1 \right) \\ & \Rightarrow {{x}^{2}}+3x+1=4{{x}^{2}}-8x+4 \\ & \Leftrightarrow 3{{x}^{2}}-11x+3=0 \\ & \overset{x>1}{\mathop{\Leftrightarrow }}\,x=\dfrac{11+\sqrt{85}}{6}\approx \boxed{3.3699} \\ \end{aligned}

Rocco Dalto
Nov 15, 2020

m = 180 ( α + β ) = 180 λ λ = α + β m = 180 - (\alpha + \beta) = 180 - \lambda \implies \lambda = \alpha + \beta

\implies tan ( λ ) = h x = tan ( α + β ) \tan(\lambda) = \dfrac{h}{x} = \tan(\alpha + \beta) , where tan ( β ) = h 2 x + 1 \tan(\beta) = \dfrac{h}{2x + 1} and tan ( α ) = h 3 x + 1 \tan(\alpha) = \dfrac{h}{3x + 1}

\implies h x = tan ( α + β ) = tan ( α ) + tan ( β ) 1 tan ( α ) tan ( β ) = \dfrac{h}{x} = \tan(\alpha + \beta) = \dfrac{\tan(\alpha) + \tan(\beta)}{1 - \tan(\alpha)\tan(\beta)} = h 3 x + 1 + h 2 x + 1 1 h 2 ( 3 x + 1 ) ( 2 x + 1 ) = ( 5 x + 2 6 x 2 + 5 x + 1 h 2 ) h \dfrac{\dfrac{h}{3x + 1} + \dfrac{h}{2x + 1}}{1 - \dfrac{h^2}{(3x + 1)(2x + 1)}} = (\dfrac{5x + 2}{6x^2 + 5x + 1 - h^2})h

1 x = 5 x + 2 6 x 2 + 5 x + 1 h 2 6 x 2 + 5 x + 1 h 2 = 5 x 2 + 2 x \implies \dfrac{1}{x} = \dfrac{5x + 2}{6x^2 + 5x + 1 - h^2} \implies 6x^2 + 5x + 1 - h^2 = 5x^2 + 2x

h 2 = x 2 + 3 x + 1 h = x 2 + 3 x + 1 \implies h^2 = x^2 + 3x + 1 \implies h = \sqrt{x^2 + 3x + 1}

A D B E = 1 2 ( x + 1 ) ( x 2 + 3 x + 1 ) = x 2 1 = ( x 1 ) ( x + 1 ) \implies A_{\triangle{DBE}} = \dfrac{1}{2}(x + 1)(\sqrt{x^2 + 3x + 1}) = x^2 - 1 = (x - 1)(x + 1) \implies

x 2 + 3 x + 1 = 2 ( x 1 ) x 2 + 3 x + 1 = 4 x 2 8 x + 4 \sqrt{x^2 + 3x + 1} = 2(x - 1) \implies x^2 + 3x + 1 = 4x^2 - 8x + 4 \implies

3 x 2 11 x + 3 = 0 x = 11 ± 85 6 3x^2 - 11x + 3 = 0 \implies x = \dfrac{11 \pm \sqrt{85}}{6} and x > 1 x = 11 + 85 6 x > 1 \implies x = \dfrac{11 + \sqrt{85}}{6} 3.369924 \approx \boxed{3.369924} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...