Two Four Thirteen

Geometry Level 3

Let 0 A , B , C 9 0 0\leq A ,B,C\leq90^\circ such that tan ( A ) = 2 \tan (A) = 2 , tan ( B ) = 4 \tan( B) = 4 , tan ( C ) = 13 \tan (C) = 13 . Find the value of A + B + C A + B +C .

Clarification : Angles are measured in degrees.


The answer is 225.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Refaat M. Sayed
Aug 13, 2015

Direct solution We can use this formula to solve the problem tan ( A + B + C ) = tan ( A ) + tan ( B ) + tan ( C ) tan ( A ) tan ( B ) tan ( C ) 1 tan ( A ) tan ( B ) tan ( B ) tan ( C ) tan ( C ) tan ( A ) = 19 104 1 8 52 26 = 1 \tan \left( A + B + C \right) = \frac{\tan \left( A\right) + \tan \left( B \right) +\tan \left( C\right) - \tan \left( A\right) \tan \left( B\right) \tan \left( C\right) }{1- \tan \left( A\right) \tan \left( B\right) - \tan \left( B\right) \tan \left( C\right) - \tan \left( C\right) \tan \left( A\right) } = \frac{19-104}{1-8-52-26} = 1 so : A + B + C = 45 ˚ , 225 ˚ \text{so}: A + B +C =\mathring{45} , \mathring{225} But T a n ( A ) = 2 Tan(A) = 2 so A > 45 ˚ A> \mathring{45} so : A + B + C = 225 ˚ \text{so} : A +B + C =\mathring{225}

Same Method! :) Nice problem!

Nihar Mahajan - 5 years, 10 months ago

Log in to reply

Thanks Nihar :)

Refaat M. Sayed - 5 years, 10 months ago
Chew-Seong Cheong
Aug 15, 2015

tan ( A + B ) = tan A + tan B 1 tan A tan B = 2 + 4 1 ( 2 ) ( 4 ) = 6 7 [ A + B > 9 0 ] tan ( A + B + C ) = tan ( A + B ) + tan C 1 tan ( A + B ) tan c = 6 7 + 13 1 ( 6 7 ) ( 13 ) = 85 7 85 7 = 1 A + B + C = 225 [ > 9 0 ] \begin{aligned} \tan{(A+B)} & = \frac{\tan{A}+\tan{B}}{1-\tan{A} \tan{B}} \\ & = \frac{2+4}{1-(2)(4)} = \color{#D61F06}{-}\frac{6}{7} \quad \quad \small \color{#D61F06}{[\Rightarrow A+B > 90^\circ]} \\ \tan{(A+B+C)} & = \frac{\tan{(A+B)}+\tan{C}}{1-\tan{(A+B)} \tan{c}} \\ & = \frac{-\frac{6}{7}+13}{1- \left( - \frac{6}{7} \right)(13)} = \frac{\frac{85}{7}}{\frac{85}{7}} = 1 \\ \Rightarrow A+B+C & = \boxed{225}^\circ \quad \quad \small \color{#D61F06}{[> 90^\circ]} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...