Let 0 ≤ A , B , C ≤ 9 0 ∘ such that tan ( A ) = 2 , tan ( B ) = 4 , tan ( C ) = 1 3 . Find the value of A + B + C .
Clarification : Angles are measured in degrees.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Same Method! :) Nice problem!
tan ( A + B ) tan ( A + B + C ) ⇒ A + B + C = 1 − tan A tan B tan A + tan B = 1 − ( 2 ) ( 4 ) 2 + 4 = − 7 6 [ ⇒ A + B > 9 0 ∘ ] = 1 − tan ( A + B ) tan c tan ( A + B ) + tan C = 1 − ( − 7 6 ) ( 1 3 ) − 7 6 + 1 3 = 7 8 5 7 8 5 = 1 = 2 2 5 ∘ [ > 9 0 ∘ ]
Problem Loading...
Note Loading...
Set Loading...
Direct solution We can use this formula to solve the problem tan ( A + B + C ) = 1 − tan ( A ) tan ( B ) − tan ( B ) tan ( C ) − tan ( C ) tan ( A ) tan ( A ) + tan ( B ) + tan ( C ) − tan ( A ) tan ( B ) tan ( C ) = 1 − 8 − 5 2 − 2 6 1 9 − 1 0 4 = 1 so : A + B + C = 4 5 ˚ , 2 2 5 ˚ But T a n ( A ) = 2 so A > 4 5 ˚ so : A + B + C = 2 2 5 ˚