A geometry problem by A Former Brilliant Member

Geometry Level 3

If cos θ sin θ cos θ + sin θ = 1 3 1 + 3 \dfrac{\cos\theta-\sin\theta}{\cos\theta+\sin\theta}=\dfrac{1-\sqrt{3}}{1+\sqrt{3}} , then find acute angle θ \theta .

0 0^\circ 3 0 30^\circ 6 0 60^\circ 4 5 45^\circ

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sabhrant Sachan
Jun 20, 2016

We have cos θ sin θ cos θ + sin θ = 1 3 1 + 3 , Apply C and D cos θ sin θ + cos θ + sin θ cos θ sin θ cos θ sin θ = 1 3 + 1 + 3 1 3 1 3 2 cos θ 2 sin θ = 2 2 3 tan θ = 3 θ = 6 0 \text{We have } \quad \dfrac{\cos{\theta}-\sin{\theta}}{\cos{\theta}+\sin{\theta}} = \dfrac{1-\sqrt{3}}{1+\sqrt{3}} \quad , \quad \text{Apply C and D } \\ \quad \dfrac{\cos{\theta}-\sin{\theta}+\cos{\theta}+\sin{\theta}}{\cos{\theta}-\sin{\theta}-\cos{\theta}-\sin{\theta}} = \dfrac{1-\sqrt{3}+1+\sqrt{3}}{1-\sqrt{3}-1-\sqrt{3}} \implies -\dfrac{2\cos{\theta}}{2\sin{\theta}} = -\dfrac{2}{2\sqrt3} \\ \quad \tan{\theta} = \sqrt3 \\\quad \implies \boxed{\theta = 60^\circ}

Nice solution(+1) ! Did the same way.

Rishabh Tiwari - 4 years, 12 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...