A geometry problem by A Former Brilliant Member

Geometry Level 4

If sin θ + sin 2 θ + sin 3 θ = 1 \sin\theta+\sin^2\theta+\sin^3\theta=1 , then find the value of cos 6 θ 4 cos 4 θ + 8 cos 2 θ \cos^6\theta-4\cos^4\theta+8\cos^2\theta .

2 1 0 4

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Rishabh Jain
Jun 20, 2016

sin θ + sin 3 θ = 1 sin 2 θ = cos 2 θ \sin\theta+\sin^3\theta=1-\sin^2\theta=\cos^2\theta sin θ ( 1 + sin 2 θ 1 cos 2 θ ) = cos 2 θ \implies \sin \theta(1+\underbrace{\sin^2\theta}_{1-\cos^2\theta})=\cos^2\theta Squaring both sides:

sin 2 θ 1 cos 2 θ ( 2 cos 2 θ ) 2 = cos 4 θ \underbrace{\sin^2\theta}_{1-\cos^2\theta}(2-\cos^2\theta)^2=\cos^4\theta

( 1 cos 2 θ ) ( cos 4 θ 4 cos 2 θ + 4 ) = cos 4 θ (1-\cos^2\theta)(\cos^4\theta-4\cos^2\theta +4)=\cos^4\theta

cos 6 θ 4 cos 4 θ + 8 cos 2 θ = 4 \implies\cos^6\theta-4\cos^4\theta+8\cos^2\theta=\large\boxed{\color{#69047E}{4}}

Hung Woei Neoh
Jun 21, 2016

Given that sin 3 θ + sin 2 θ + sin θ = 1 \sin^3\theta+\sin^2\theta+\sin\theta= 1

cos 6 θ 4 cos 4 θ + 8 cos 2 θ = ( 1 sin 2 θ ) 3 4 ( 1 sin 2 θ ) 2 + 8 ( 1 sin 2 θ ) = 1 3 sin 2 θ + 3 sin 4 θ sin 6 θ 4 ( 1 2 sin 2 θ + sin 4 θ ) + 8 8 sin 2 θ = sin 6 θ sin 4 θ 3 sin 2 θ + 5 = sin 6 θ sin 5 θ sin 4 θ + sin 5 θ + sin 4 θ + sin 3 θ sin 4 θ sin 3 θ sin 2 θ 2 sin 2 θ + 5 = sin 3 θ ( sin 3 θ + sin 2 θ + sin θ ) + sin 2 θ ( sin 3 θ + sin 2 θ + sin θ ) sin θ ( sin 3 θ + sin 2 θ + sin θ ) 2 sin 2 θ + 5 = sin 3 θ + sin 2 θ sin θ 2 sin 2 θ + 5 = sin 3 θ sin 2 θ sin θ + 5 = ( sin 3 θ + sin 2 θ + sin θ ) + 5 = 1 + 5 = 4 \cos^6 \theta -4\cos^4 \theta + 8 \cos^2 \theta\\ =(1-\sin^2\theta)^3-4(1-\sin^2\theta)^2+8(1-\sin^2\theta)\\ =1-3\sin^2\theta+3\sin^4\theta-\sin^6\theta -4(1-2\sin^2\theta+\sin^4\theta)+8-8\sin^2\theta\\ =-\sin^6\theta-\sin^4\theta-3\sin^2\theta+5\\ =\color{#3D99F6}{-\sin^6\theta}\color{#69047E}{-\sin^5\theta}-\color{navy}{\sin^4\theta}\color{#69047E}{+\sin^5\theta}\color{navy}{+\sin^4\theta}\color{#EC7300}{+\sin^3\theta}\color{navy}{-\sin^4\theta}\color{#EC7300}{-\sin^3\theta}\color{#20A900}{-\sin^2\theta-2\sin^2\theta}+5\\ =-\sin^3\theta\color{#D61F06}{(\sin^3\theta+\sin^2\theta+\sin\theta)} +\sin^2\theta\color{#D61F06}{(\sin^3\theta+\sin^2\theta+\sin\theta)}-\sin\theta\color{#D61F06}{(\sin^3\theta+\sin^2\theta+\sin\theta)}-2\sin^2\theta+5\\ =-\sin^3\theta+\sin^2\theta-\sin\theta-2\sin^2\theta+5\\ =-\sin^3\theta-\sin^2\theta-\sin\theta+5\\ =-\color{#D61F06}{(\sin^3\theta+\sin^2\theta+\sin\theta)}+5\\ =-1+5\\ =\boxed{4}

x+y+z=9, x 2+y 2+z 2=29, x 3+y 3+z 3=99 find x,y,z

Obarewo John - 4 years, 11 months ago

Log in to reply

Ummm...why are you commenting this here?

Hung Woei Neoh - 4 years, 11 months ago

S i n 3 X + S i n 2 + S i n X = 1 , S i n X ( S i n 2 X + 1 ) = 1 S i n 2 X . B u t 1 S i n 2 X = C o s 2 X . ( 1 C o s 2 X ) ( 2 C o s 2 X ) = C o s 2 X . S q u a r i n g b o t h s i d e s , ( 1 C o s 2 X ) ( 4 4 C o s 2 X + C o s 4 X ) = C o s 4 X . 4 4 C o s 2 X + C o s 4 X 4 C o s 2 X + 4 C o s 4 X C o s 6 X C o s 4 X = 0. 4 = C o s 6 X 4 C o s 4 X + 8 C o s 2 X . Sin^3X+Sin^2+SinX=1,\ \ \ \ \implies\ SinX(Sin^2X+1)=1-Sin^2X.\\ But\ 1-Sin^2X=Cos^2X.\ \ \therefore\ (\sqrt{1-Cos^2X})(2-Cos^2X)=Cos^2X.\\ Squaring\ both\ sides,\ \ (1-Cos^2X)(4-4Cos^2X+Cos^4X)=Cos^4X.\\ \!\implies\! 4\!-\!4Cos^2X\!+\!Cos^4X-4Cos^2X\!+\!4Cos^4X-Cos^6X-Cos^4X\!=\!0.\\ 4=Cos^6X-4Cos^4X+8Cos^2X.\\
I have used X in place of θ \theta for ease of typing. The answer is 4 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...