Converting Angles To Something Relatable

Geometry Level 2

1 sin 1 0 3 cos 1 0 = ? \large \dfrac{1}{\sin 10^\circ}-\dfrac{\sqrt{3}}{\cos10^\circ} =\, ?


The answer is 4.0000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Relevant wiki: Sum and Difference Trigonometric Formulas - Problem Solving

This can be written as

1 cos ( 1 0 ) 3 sin ( 1 0 ) sin ( 1 0 ) cos ( 1 0 ) = 4 ( 1 2 cos ( 1 0 ) 3 2 sin ( 1 0 ) ) 2 sin ( 1 0 ) cos ( 1 0 ) = \dfrac{1*\cos(10^{\circ}) - \sqrt{3}*\sin(10^{\circ})}{\sin(10^{\circ})\cos(10^{\circ})} = \dfrac{4*\left(\dfrac{1}{2}\cos(10^{\circ}) - \dfrac{\sqrt{3}}{2}\sin(10^{\circ})\right)}{2\sin(10^{\circ})\cos(10^{\circ})} =

4 ( sin ( 15 0 ) cos ( 1 0 ) + cos ( 15 0 ) sin ( 1 0 ) ) sin ( 2 0 ) = 4 sin ( 16 0 ) sin ( 2 0 ) = 4 \dfrac{4*(\sin(150^{\circ})\cos(10^{\circ}) + \cos(150^{\circ})\sin(10^{\circ}))}{\sin(20^{\circ})} = \dfrac{4\sin(160^{\circ})}{\sin(20^{\circ})} = \boxed{4} ,

since sin ( x ) = sin ( 18 0 x ) \sin(x) = \sin(180^{\circ} - x) .

Indeed :

( 1 2 cos ( 1 0 ) 3 2 sin ( 1 0 ) ) = sin ( 30 10 ) = sin 20 \left(\dfrac{1}{2}\cos(10^{\circ}) - \dfrac{\sqrt{3}}{2}\sin(10^{\circ})\right)=\sin (30-10)=\sin 20

No need to use sin ( π x ) = sin x \sin(\pi-x)=\sin x , otherwise I was writing the exact same solution. BTW (+1) :-)

Rishabh Jain - 4 years, 12 months ago

I used c o s 60 c o s 10 s i n 60 s i n 10 = c o s 70 cos60cos10-sin60sin10=cos70 and, s i n 20 = c o s 70 sin20=cos70 A fan of 'cosine', ain't I?

Atomsky Jahid - 4 years, 12 months ago

Still a bit unsure why sin 160 / sin 20 = 1 Which identity allows this to be true?

Michael Gonzalez - 4 years, 10 months ago

Log in to reply

We can use the formula

sin ( a b ) = sin ( a ) cos ( b ) cos ( a ) sin ( b ) \sin(a - b) = \sin(a)\cos(b) - \cos(a)\sin(b)

with a = 18 0 a = 180^{\circ} and b = 2 0 b = 20^{\circ} , giving us that

sin ( 16 0 ) = sin ( 18 0 2 0 ) = sin ( 18 0 ) cos ( 2 0 ) cos ( 18 0 ) sin ( 2 0 ) = \sin(160^{\circ}) = \sin(180^{\circ} - 20^{\circ}) = \sin(180^{\circ})\cos(20^{\circ}) - \cos(180^{\circ})\sin(20^{\circ}) =

0 cos ( 2 0 ) ( 1 ) sin ( 2 0 ) = sin ( 2 0 ) 0*\cos(20^{\circ}) - (-1)*\sin(20^{\circ}) = \sin(20^{\circ}) .

Brian Charlesworth - 4 years, 10 months ago
Chew-Seong Cheong
Jun 20, 2016

Relevant wiki: Sum and Difference Trigonometric Formulas - Problem Solving

1 sin 1 0 3 cos 1 0 = 2 × 1 2 sin 1 0 2 × 3 2 cos 1 0 = 2 ( sin 3 0 sin 1 0 cos 3 0 cos 1 0 ) = 2 ( 3 sin 1 0 4 sin 3 1 0 sin 1 0 4 cos 3 1 0 3 cos 1 0 cos 1 0 ) = 2 ( 3 4 sin 2 1 0 4 cos 2 1 0 + 3 ) = 2 ( 6 4 ) = 4 \begin{aligned} \frac 1{\sin 10^\circ} - \frac {\sqrt{3}}{\cos 10^\circ} & = \frac {2\times \frac 12}{\sin 10^\circ} - \frac {2 \times \frac {\sqrt{3}}{2}}{\cos 10^\circ} \\ & = 2 \left(\frac {\sin 30^\circ}{\sin 10^\circ} - \frac {\cos 30^\circ}{\cos 10^\circ} \right) \\ & = 2 \left(\frac {3\sin 10^\circ - 4 \sin^3 10^\circ}{\sin 10^\circ} - \frac {4\cos^3 10^\circ - 3 \cos 10^\circ}{\cos 10^\circ} \right) \\ & = 2 \left(3 - 4 \sin^2 10^\circ - 4\cos^2 10^\circ + 3 \right) \\ & = 2 \left(6 - 4 \right) \\ & = \boxed{4} \end{aligned}

Amed Lolo
Aug 16, 2016

sin10=cos80=cos2(40) =2(cos40)^2-1. =2×(2cos^2(20)-1)^2-1. =2×(4cos^4(20)-4cos^2(20)+1)-1. =8cos^4(20)-8cos^2(20)+2-1 =8cos^2(20){cos^2(20)-1}+1. =8(1-2sin^2(10))^2{(1-2sin^2(10))^2-1}+1. Put sin10=X.above formula will be like this ,x= 8(1-4x^2+4x^4)(1-4x^2+4x^4-1)+1 so 128x^8-256x^6+160x^4-32x^2-x+1=0. by trying & error X=sin10=nearly .173648 so cos10=(1-.173648^2)^.5=.9848078 so the expression =(1÷(.173648))-(√3÷.9848078)=4.000005

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...