Where Did x x Go?

Geometry Level 1

{ a cos x + b sin x = 3 a sin x b cos x = 4 \large \begin{cases} a\cos x +b\sin x =3 \\ a \sin x- b\cos x=4 \end{cases} Given the above, find a 2 + b 2 a^2+b^2 .


The answer is 25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Sam Bealing
Jun 20, 2016

Square both equations to give:

a 2 c o s 2 x + b 2 s i n 2 x + 2 a b sin x cos x = 9 a 2 s i n 2 x + b 2 c o s 2 x 2 a b sin x cos x = 16 a^2 cos^2{x}+b^2 sin^2{x}+2ab \sin{x} \cos{x}=9 \\ a^2 sin^2{x}+b^2 cos^2{x}-2ab \sin{x} \cos{x}=16

Adding these two together gives:

( a 2 + b 2 ) ( sin 2 x + cos 2 x ) = 25 (a^2+b^2)(\sin^2{x}+\cos^2{x})=25

As sin 2 x + cos 2 x = 1 \sin^2{x}+\cos^2{x}=1 we have:

a 2 + b 2 = 25 \color{#20A900}{\boxed{\boxed{a^2+b^2=25}}}

Moderator note:

Great approach!

Rishabh Jain
Jun 20, 2016

Relevant wiki: Fundamental Trigonometric Identities - Problem Solving (Easy)

Squaring 1 s t 1st equation and using sin 2 x = 1 cos 2 x \sin^2x=1-\cos^2x :

a 2 ( 1 sin 2 x ) + b 2 ( 1 cos 2 x ) + 2 a b sin x cos x = 16 a^2(1-\sin^2x)+b^2(1-\cos^2x)+2ab\sin x\cos x=16 a 2 + b 2 16 = ( a sin x b cos x ) 2 = 4 2 \implies a^2+b^2-16=(a\sin x-b\cos x)^2=4^2 a 2 + b 2 = 25 \large\implies a^2+b^2=\color{#0C6AC7}{\boxed{25}}

Roberto Gallotta
Jun 20, 2016

Assuming this works for any x x , we can simplify things up a bit. For instance, let's change the x x to π 2 \frac{\pi}{2} : { a cos ( π 2 ) + b sin ( π 2 ) = 3 a sin ( π 2 ) b cos ( π 2 ) = 4 \begin{cases} a\cos(\frac{\pi}{2}) + b\sin(\frac{\pi}{2}) = 3 \\ a\sin(\frac{\pi}{2}) - b\cos(\frac{\pi}{2}) = 4 \end{cases} = { a × 0 + b × 1 = 3 a × 1 b × 0 = 4 = \begin{cases} a\times0 + b\times1 = 3 \\ a\times1 - b\times0 = 4 \end{cases} From which we can tell that a = 4 a = 4 and b = 3 b = 3 a 2 + b 2 = 25 \rightarrow a^2 + b^2 = \boxed{25}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...