A geometry problem by A Former Brilliant Member

Geometry Level 4

cos 2 ( π n ) + cos 2 ( 2 π n ) + cos 2 ( 3 π n ) + + cos 2 ( ( n 1 ) π n ) \cos^2 \left(\dfrac\pi n \right) + \cos^2 \left( \dfrac {2\pi} n \right) + \cos^2 \left(\dfrac {3\pi} n \right) + \cdots + \cos^2 \left(\dfrac {(n-1)\pi} n \right)

For integer n > 1 n>1 , find the closed form of the expression above.

n 1 2 \dfrac{n-1}{2} n ( n + 1 ) 2 \dfrac{n(n+1)}{2} n 2 \dfrac{n}{2} n 2 2 \dfrac{n-2}{2} None of these choices

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

S = k = 1 n 1 cos 2 k π n = 1 2 k = 1 n 1 ( 1 + cos 2 k π n ) = n 1 2 + 1 2 k = 1 n 1 cos 2 k π n \begin{aligned} S & = \sum_{k=1}^{n-1} \cos^2 \frac {k\pi}n = \frac 12 \sum_{k=1}^{n-1} \left(1+\cos \frac {2k\pi}n \right) = \frac {n-1}2 + \frac 12 \sum_{k=1}^{n-1} \cos \frac {2k\pi}n \end{aligned}

For even n = 2 m n=2m , then

k = 1 n 1 cos 2 k π n = k = 1 2 m 1 cos k π m = k = 1 m 1 cos k π m + cos m π m + k = m + 1 2 m 1 cos k π m = k = 1 m 1 cos k π m 1 + k = 1 m 1 cos ( m + k ) π m = k = 1 m 1 cos k π m 1 + k = 1 m 1 cos ( π + k π m ) Note that cos ( π + θ ) = cos θ = k = 1 m 1 cos k π m 1 k = 1 m 1 cos k π m = 1 \begin{aligned} \sum_{k=1}^{n-1} \cos \frac {2k\pi}n & = \sum_{k=1}^{2m-1} \cos \frac {k\pi}m \\ & = \sum_{k=1}^{m-1} \cos \frac {k\pi}m + \cos \frac {m\pi}m + \sum_{k=m+1}^{2m-1} \cos \frac {k\pi}m \\ & = \sum_{k=1}^{m-1} \cos \frac {k\pi}m - 1 + \sum_{k=1}^{m-1} \cos \frac {(m+k)\pi}m \\ & = \sum_{k=1}^{m-1} \cos \frac {k\pi}m - 1 + \sum_{k=1}^{m-1} \cos \left(\pi + \frac {k\pi}m\right) & \small \color{#3D99F6} \text{Note that }\cos (\pi + \theta) = - \cos \theta \\ & = \sum_{k=1}^{m-1} \cos \frac {k\pi}m - 1 - \sum_{k=1}^{m-1} \cos \frac {k\pi}m \\ & = - 1 \end{aligned}

For odd n = 2 m + 1 n=2m+1 , then

k = 1 2 m cos 2 k π 2 m + 1 = k = 1 m cos 2 k π 2 m + 1 + k = m + 1 2 m cos 2 k π 2 m + 1 Note that k = 1 m cos 2 k π 2 m + 1 = 1 2 = 1 2 + k = 1 m cos 2 ( m + k ) π 2 m + 1 = 1 2 + k = 1 m cos ( π ( 2 k 1 ) π 2 m + 1 ) = 1 2 k = 1 m cos ( 2 k 1 ) π 2 m + 1 and k = 1 m cos ( 2 k 1 ) π 2 m + 1 = 1 2 = 1 2 1 2 = 1 \begin{aligned} \sum_{k=1}^{2m} \cos \frac {2k\pi}{2m+1} & = {\color{#3D99F6}\sum_{k=1}^m \cos \frac {2k\pi}{2m+1}} + \sum_{k=m+1}^{2m} \cos \frac {2k\pi}{2m+1} & \small \color{#3D99F6} \text{Note that } \sum_{k=1}^m \cos \frac {2k\pi}{2m+1} = - \frac 12 \\ & = {\color{#3D99F6} - \frac 12} + \sum_{k=1}^m \cos \frac {2(m+k)\pi}{2m+1} \\ & = - \frac 12 + \sum_{k=1}^m \cos \left(\pi - \frac {(2k-1)\pi}{2m+1} \right) \\ & = - \frac 12 - \color{#3D99F6} \sum_{k=1}^m \cos \frac {(2k-1)\pi}{2m+1} & \small \color{#3D99F6} \text{and } \sum_{k=1}^m \cos \frac {(2k-1)\pi}{2m+1} = \frac 12 \\ & = - \frac 12 - \color{#3D99F6} \frac 12 \\ & = - 1 \end{aligned}

Therefore, for all n > 1 n > 1 , S = k = 1 n 1 cos 2 k π n = n 1 2 + 1 2 ( 1 ) = n 2 2 \displaystyle S = \sum_{k=1}^{n-1} \cos^2 \frac {k\pi}n = \frac {n-1}2 + \frac 12 (-1) = \boxed{\dfrac {n-2}2} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...