A geometry problem by A Former Brilliant Member

Geometry Level 3

Incircle of radius 4 cm 4 \text{ cm} of a triangle A B C ABC touches the side B C BC at D D . If B D = 6 cm , D C = 8 cm BD=6 \text{ cm}, DC=8\text{ cm} , then what area of triangle A B C ABC ?

Give your answer in cm 2 \text{cm}^2 .


The answer is 84.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let the incircle touch AC at E, AB at F. Tangents from vertex to in circle have equal lengths. AE=AF=X say. FB=BD=6. EC=DC=8. AB=X+6. BC=6+8. AC=X+8. So semiperemeter S=X+14. A r e a 2 = ( X + 14 ) 8 X 6..... H e r o s f o r m u l a . i n r a d i u s 2 = a r e a 2 S 2 , 4 2 = ( X + 14 ) 8 X 6 ( X + 14 ) 2 S o 16 = 48 ( X + 14 ) , X = 7. a r e a = ( 7 + 14 ) 8 7 6 = 84 c m 2 . \text{Let the incircle touch AC at E, AB at F. Tangents from vertex to in circle have equal lengths.}\\ \therefore\ \text{AE=AF=X say. FB=BD=6. EC=DC=8.}\\ \implies\ \text{AB=X+6. BC=6+8. AC=X+8. So semiperemeter S=X+14.}\\ \therefore\ Area^2=(X+14)*8*X*6.....Hero's formula.\\ \therefore\ inradius^2=\dfrac{area^2}{S^2},\ \implies\ 4^2=\dfrac{(X+14)*8*X*6}{(X+14)^2}\\ So\ 16=48*(X+14),\ \ \implies\ X=7.\\ \therefore\ area=\sqrt{(7+14)*8*7*6}=\ \ \ \ \color{#D61F06}{84}\ cm^2.

Ahmad Saad
Apr 19, 2016

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...