A geometry problem by A Former Brilliant Member

Geometry Level 2

If cos θ sin θ = 2 sin θ \cos \theta - \sin \theta = \sqrt2 \sin \theta , which of the following is equal to cos θ + sin θ \cos \theta + \sin \theta ?

2 cos θ \sqrt2 \cos\theta 2 cot θ \sqrt2 \cot\theta 2 tan θ \sqrt2 \tan\theta 2 csc θ \sqrt2 \csc\theta

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Memelion Kekeron
Apr 12, 2017

c o s ( θ ) = s i n ( θ ) ( 1 + 2 ) cos(\theta)=sin(\theta)(1+\sqrt{2})

s i n ( θ ) c o s ( θ ) = 1 1 + 2 \frac{sin(\theta)}{cos(\theta)}=\frac{1}{1+\sqrt{2}}

t a n ( θ ) = 1 1 + 2 tan(\theta)=\frac{1}{1+\sqrt{2}}

set x = 1 1 + 2 x=\frac{1}{1+\sqrt{2}}

θ = t a n 1 ( 1 1 + 2 ) \theta=tan^{-1}(\frac{1}{1+\sqrt{2}}) so by standard identities s i n ( θ ) = x 1 + x 2 sin(\theta)=\frac{x}{\sqrt{1+x^2}} and c o s ( θ ) = 1 1 + x 2 cos(\theta)=\frac{1}{\sqrt{1+x^2}} . So s i n ( θ ) + c o s ( θ ) = 1 + x 1 + x 2 sin(\theta)+cos(\theta)=\frac{1+x}{\sqrt{1+x^2}}

Then by noting that x = 1 1 + 2 = 2 1 x=\frac{1}{1+\sqrt{2}}=\sqrt{2}-1

we get 1 2 + x = 0 1-\sqrt{2}+x=0

so 1 + x 2 1 + x 2 = 0 \frac{1+x-\sqrt{2}}{\sqrt{1+x^2}}=0

from which it follows

s i n ( θ ) + c o s ( θ ) = 1 + x 1 + x 2 = 2 1 + x 2 = 2 c o s ( θ ) sin(\theta)+cos(\theta)=\frac{1+x}{\sqrt{1+x^2}}=\frac{\sqrt{2}}{\sqrt{1+x^2}}=\sqrt{2}cos(\theta)

James Wilson
Jan 13, 2021

By the harmonic addition formula, cos θ sin θ = 2 cos ( θ + π / 4 ) = 2 sin ( π / 4 θ ) . \cos\theta-\sin\theta=\sqrt{2}\cos(\theta+\pi/4)=\sqrt{2}\sin(\pi/4-\theta).

So, 2 sin ( π / 4 θ ) = 2 sin θ \sqrt{2}\sin(\pi/4-\theta)=\sqrt{2}\sin\theta

π / 4 θ + 2 k π = θ \Rightarrow \pi/4-\theta+2k\pi=\theta

θ = π / 8 + k π . \Rightarrow \theta = \pi/8+k\pi.

Apply the harmonic addition formula again to obtain:

cos θ + sin θ = 2 cos ( θ π / 4 ) \cos\theta+\sin\theta=\sqrt{2}\cos(\theta-\pi/4)

= 2 cos ( π / 8 + k π π / 4 ) =\sqrt{2}\cos(\pi/8+k\pi-\pi/4)

= 2 cos ( π / 8 + k π ) =\sqrt{2}\cos(-\pi/8+k\pi)

= 2 cos ( π / 8 k π ) . =\sqrt{2}\cos(\pi/8-k\pi).

= 2 cos ( π / 8 k π + 2 k π ) =\sqrt{2}\cos(\pi/8-k\pi+2k\pi)

= 2 cos ( π / 8 + k π ) =\sqrt{2}\cos(\pi/8+k\pi)

= 2 cos θ . =\sqrt{2}\cos\theta.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...