A geometry problem by abhishek anand

Geometry Level 4

find the measure of x

10 80 40 20 30 60

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

By approximation method. Let A B = 1 AB=1 .

Apply sine law at A D B \triangle ADB .

D A sin 60 = 1 sin 40 \dfrac{DA}{\sin 60}=\dfrac{1}{\sin 40} \implies D A 1.347296355 DA \approx 1.347296355

B D sin 80 = 1 sin 40 \dfrac{BD}{\sin 80}=\dfrac{1}{\sin 40} \implies B D 1.532088886 BD \approx 1.532088886

Apply sine law at A E B \triangle AEB .

E B sin 70 = 1 sin 30 \dfrac{EB}{\sin 70}=\dfrac{1}{\sin 30} \implies E B 1.879385242 EB \approx 1.879385242

Apply cosine law at E D B \triangle EDB .

( D E ) 2 = ( 1.532088886 ) 2 + ( 1.879385242 ) 2 2 ( 1.532088886 ) ( 1.879385242 ) ( cos 20 ) (DE)^2=(1.532088886)^2+(1.879385242)^2-2(1.532088886)( 1.879385242)(\cos 20)

D E 0.684040287 DE \approx 0.684040287

Finally, apply sine law at D E A \triangle DEA .

sin x 1.347296355 = sin 10 0.684040287 \dfrac{\sin x}{1.347296355}=\dfrac{\sin 10}{0.684040287}

sin x = 0.342020143 \sin x=0.342020143

x = sin 1 0.342020143 = x=\sin^{-1}0.342020143= 20 \boxed{20}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...