Tight Packing Shapes

Geometry Level 5

In the figure above, A B C D ABCD is a square with side length 16 and W W is the midpoint of A B AB . Find the radius of the circle to two decimal places.


The answer is 6.11.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Ajay Sambhriya
Aug 23, 2016

Very good question I got the ans using same method

Prabhat Rao - 4 years, 9 months ago

this one i gonna be the easiest one ...

Ajay Sambhriya - 4 years, 9 months ago

Log in to reply

Indeed. Very clever. :)

Brian Charlesworth - 4 years, 9 months ago

Log in to reply

thanks sir ji

Ajay Sambhriya - 4 years, 9 months ago

sir how have you modified the figure????

Deepansh Jindal - 4 years, 9 months ago

What a delight! Brilliant!

Ujjwal Rane - 4 years, 9 months ago
Chew-Seong Cheong
Aug 23, 2016

Let W D C = θ \angle WDC = \theta , then tan θ = 16 8 = 2 \tan \theta = \frac {16}8 = 2 . Let O O be the centre and r r be the radius of the circle. Then we note that O D C = θ 2 \angle ODC = \frac \theta 2 . Then we have tan θ 2 = r 16 r \tan \frac \theta 2 = \frac r{16-r} . Using a calculator, we can find θ = 1.107148718 rad \theta = 1.107148718 \text{ rad} , then tan θ 2 = 0.618033989 \tan \frac \theta 2 = 0.618033989 and r = 6.11145618 6.11 r = 6.11145618 \approx \boxed{6.11} .

Using hand calculations is as follows:

tan θ = 2 2 tan θ 2 1 tan 2 θ 2 = 2 Note that tan θ 2 = r 16 r 2 r 16 r 1 r 2 ( 16 r ) 2 = 2 16 r r 2 256 32 r + r 2 r 2 = 1 16 r r 2 = 256 32 r r 2 48 r + 256 = 0 r = 24 ± 8 5 As 24 + 8 5 > 16 , it is rejected. = 24 8 5 6.11 \begin{aligned} \tan \theta & = 2 \\ \frac {2 \color{#3D99F6}{\tan \frac \theta 2}}{1 - \color{#3D99F6}{\tan^2 \frac \theta 2}} & = 2 & \small \color{#3D99F6}{\text{Note that } \tan \frac \theta 2 = \frac r{16-r}} \\ \frac {2 \cdot \color{#3D99F6}{\frac r{16-r}}}{1 - \color{#3D99F6}{\frac {r^2}{(16-r)^2}}} & = 2 \\ \frac {16r-r^2}{256-32r+r^2-r^2} & = 1 \\ 16r - r^2 & = 256 - 32r \\ r^2 - 48r + 256 & = 0 \\ \implies r & = 24 \pm 8\sqrt 5 & \small \color{#3D99F6}{\text{As }24 + 8\sqrt 5 > 16 \text{, it is rejected.}} \\ & = 24 - 8\sqrt 5 \\ & \approx \boxed{6.11} \end{aligned}

Using trigonometry.

tan θ = 8 16 \tan \theta=\dfrac{8}{16} \implies θ = tan 1 ( 8 16 ) 26.565 \theta=\tan^{-1}\left(\dfrac{8}{16}\right) \approx26.565

α = 90 26.565 2 31.7175 \alpha=\dfrac{90-26.565}{2} \approx 31.7175

Then,

tan 31.7175 = r 16 r \tan 31.7175=\dfrac{r}{16-r}

9.889 0.618 = r 9.889-0.618=r

1.618 r = 9.889 1.618r=9.889

r 6.11 r \approx 6.11

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...