A geometry problem by Akshat Sharda

Geometry Level 4

sin π 7 sin 3 π 7 sin 5 π 7 \sin \dfrac{\pi}{7}\sin \dfrac{3\pi}{7}\sin \dfrac{5\pi}{7} If the value of the expression above is in the form a b \dfrac{\sqrt{a}}{b} , where a a and b b are positive integers and a a is square free, find a + b a+b .


The answer is 15.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Oct 17, 2016

Using the identity k = 1 n 1 sin ( k π n ) = n 2 n 1 \displaystyle \prod_{k=1}^{n-1} \sin \left(\frac {k \pi}n \right) = \frac n{2^{n-1}} (see proof below), we have:

k = 1 6 sin ( k π 7 ) = 7 2 6 sin π 7 sin 2 π 7 sin 3 π 7 sin 4 π 7 sin 5 π 7 sin 6 π 7 = 7 2 6 As sin ( π x ) = sin x sin π 7 sin 5 π 7 sin 3 π 7 sin 3 π 7 sin 5 π 7 sin π 7 = 7 2 6 sin 2 π 7 sin 2 3 π 7 sin 2 5 π 7 = 7 2 6 sin π 7 sin 3 π 7 sin 5 π 7 = 7 8 \begin{aligned} \prod_{k=1}^6 \sin \left(\frac {k \pi}7 \right) & = \frac 7{2^6} \\ \sin \frac \pi 7 {\color{#3D99F6}{\sin \frac {2\pi} 7}} \sin \frac {3\pi} 7 {\color{#3D99F6}{\sin \frac {4\pi} 7}} \sin \frac {5\pi} 7 {\color{#3D99F6}{\sin \frac {6\pi} 7}} & = \frac 7{2^6} & \small \color{#3D99F6}{\text{As }\sin (\pi -x) = \sin x} \\ \sin \frac \pi 7 {\color{#3D99F6}{\sin \frac {5\pi} 7}} \sin \frac {3\pi} 7 {\color{#3D99F6}{\sin \frac {3\pi} 7}} \sin \frac {5\pi} 7 {\color{#3D99F6}{\sin \frac \pi 7}} & = \frac 7{2^6} \\ \sin^2 \frac \pi 7 \sin^2 \frac {3\pi} 7 \sin^2 \frac {5\pi} 7 & = \frac 7{2^6} \\ \implies \sin \frac \pi 7 \sin \frac {3\pi} 7 \sin \frac {5\pi} 7 & = \frac {\sqrt 7}{8} \end{aligned}

a + b = 7 + 8 = 15 \implies a+b = 7+8 = \boxed{15}


Proof for Equation 24

P = k = 1 n 1 sin ( k π n ) = k = 1 n 1 i ( e k π n i e k π n i ) 2 = i n 1 2 n 1 k = 1 n 1 1 e 2 k π n i e k π n i = i n 1 2 n 1 k = 1 n 1 ( 1 e 2 k π n i ) exp ( k = 1 n 1 k π n i ) see Note = i n 1 2 n 1 n e ( n 1 ) π i 2 = i n 1 2 n 1 n i n 1 = n 2 n 1 \begin{aligned} P & = \prod_{k=1}^{n-1} \sin \left(\frac {k \pi}n \right) \\ & = \prod_{k=1}^{n-1} \frac {i\left(e^{-\frac {k \pi}n i} - e^{\frac {k \pi}n i}\right)}2 \\ & = \frac {i^{n-1}}{2^{n-1}} \prod_{k=1}^{n-1} \frac {1 - e^{\frac {2 k \pi}n i}}{e^{\frac {k \pi}n i}} \\ & = \frac {i^{n-1}}{2^{n-1}} \frac {{\color{#3D99F6}\prod_{k=1}^{n-1} \left(1 - e^{\frac {2 k \pi}n i}\right)}}{\exp \left(\sum_{k=1}^{n-1} \frac {k \pi}n i \right)} & \small {\color{#3D99F6}\text{see Note}} \\ & = \frac {i^{n-1}}{2^{n-1}} \frac {{\color{#3D99F6}n}}{e^{\frac {(n-1)\pi i}2}} \\ & = \frac {i^{n-1}}{2^{n-1}} \frac n{i^{n-1}} \\ & = \frac n{2^{n-1}} \quad \blacksquare \end{aligned}

Note that e 2 k π n i = ω e^{\frac {2 k \pi}n i} = \omega is the n n th root of unit, which satisfies the following equation.

x n 1 + x n 2 + . . . + x + 1 = k = 1 n 1 ( x ω k ) = 0 \begin{aligned} x^{n-1} + x^{n-2} + ... + x + 1 & = \prod_{k=1}^{n-1} (x-\omega^k) = 0 \end{aligned}

k = 1 n 1 ( x ω k ) = k = 0 n 1 x k k = 1 n 1 ( 1 ω k ) = k = 0 n 1 1 = n \begin{aligned} \implies \prod_{k=1}^{n-1} (x-\omega^k) & = \sum_{k=0}^{n-1}x^k \\ \prod_{k=1}^{n-1} (1-\omega^k) & = \sum_{k=0}^{n-1} 1 = n \end{aligned}

@Chew-Seong Cheong Is that identity proved using complex no

Nitish Deshpande - 4 years, 7 months ago

Log in to reply

I was trying to proving it. I will give a reference.

Chew-Seong Cheong - 4 years, 7 months ago

I have given the proof in the above.

Chew-Seong Cheong - 4 years, 7 months ago

[ S i n ( π / 7 ) S i n ( 2 π / 7 ) S i n ( 3 π / 7 ) ] [ C o s ( π / 7 ) C o s ( 2 π / 7 ) C o s ( 3 π / 7 ) ] = 7 8 1 8 . = 1 / 8 S i n ( 2 π / 7 ) S i n ( 4 π / 7 ) S i n ( 6 π / 7 ) = 7 8 1 8 . S i n ( 5 π / 7 ) S i n ( 3 π / 7 ) S i n ( π / 7 ) = 7 / 8 = a / b a + b = 15. N o t e t h e f o l l o w i n g i d e n t i t i e s . 2 S i n A C o s A = S i n 2 A , S i n A = S i n ( π A ) , S i n ( π / 7 ) S i n ( 2 π / 7 ) S i n ( 3 π / 7 ) = 7 8 , C o s ( π / 7 ) C o s ( 2 π / 7 ) C o s ( 3 π / 7 ) = 1 / 8. [Sin(\pi/7)*Sin(2\pi/7)*Sin(3\pi/7)] *[Cos(\pi/7)*Cos(2\pi/7)*Cos(3\pi/7)]=\dfrac{\sqrt7} 8*\dfrac 1 8.\\ =1/8*Sin(2\pi/7)*Sin(4\pi/7)*Sin(6\pi/7)=\dfrac{\sqrt7} 8*\dfrac 1 8.\\ \implies\ Sin(5\pi/7)*Sin(3\pi/7)*Sin(\pi/7)={\sqrt7}/ 8=\sqrt a/ b\\ a+b=15.\\ Note\ the\ following \ identities.\\ 2SinA*CosA=Sin2A,\ \ \ SinA=Sin(\pi - A),\ \ \\\ Sin(\pi/7)*Sin(2\pi/7)*Sin(3\pi/7)=\dfrac{\sqrt7} 8,\ \ \ Cos(\pi/7)*Cos(2\pi/7)*Cos(3\pi/7)=1/8.

Niranjan Khanderia - 4 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...