sin 7 π sin 7 3 π sin 7 5 π If the value of the expression above is in the form b a , where a and b are positive integers and a is square free, find a + b .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
@Chew-Seong Cheong Is that identity proved using complex no
Log in to reply
I was trying to proving it. I will give a reference.
I have given the proof in the above.
[ S i n ( π / 7 ) ∗ S i n ( 2 π / 7 ) ∗ S i n ( 3 π / 7 ) ] ∗ [ C o s ( π / 7 ) ∗ C o s ( 2 π / 7 ) ∗ C o s ( 3 π / 7 ) ] = 8 7 ∗ 8 1 . = 1 / 8 ∗ S i n ( 2 π / 7 ) ∗ S i n ( 4 π / 7 ) ∗ S i n ( 6 π / 7 ) = 8 7 ∗ 8 1 . ⟹ S i n ( 5 π / 7 ) ∗ S i n ( 3 π / 7 ) ∗ S i n ( π / 7 ) = 7 / 8 = a / b a + b = 1 5 . N o t e t h e f o l l o w i n g i d e n t i t i e s . 2 S i n A ∗ C o s A = S i n 2 A , S i n A = S i n ( π − A ) , S i n ( π / 7 ) ∗ S i n ( 2 π / 7 ) ∗ S i n ( 3 π / 7 ) = 8 7 , C o s ( π / 7 ) ∗ C o s ( 2 π / 7 ) ∗ C o s ( 3 π / 7 ) = 1 / 8 .
Problem Loading...
Note Loading...
Set Loading...
Using the identity k = 1 ∏ n − 1 sin ( n k π ) = 2 n − 1 n (see proof below), we have:
k = 1 ∏ 6 sin ( 7 k π ) sin 7 π sin 7 2 π sin 7 3 π sin 7 4 π sin 7 5 π sin 7 6 π sin 7 π sin 7 5 π sin 7 3 π sin 7 3 π sin 7 5 π sin 7 π sin 2 7 π sin 2 7 3 π sin 2 7 5 π ⟹ sin 7 π sin 7 3 π sin 7 5 π = 2 6 7 = 2 6 7 = 2 6 7 = 2 6 7 = 8 7 As sin ( π − x ) = sin x
⟹ a + b = 7 + 8 = 1 5
Proof for Equation 24
P = k = 1 ∏ n − 1 sin ( n k π ) = k = 1 ∏ n − 1 2 i ( e − n k π i − e n k π i ) = 2 n − 1 i n − 1 k = 1 ∏ n − 1 e n k π i 1 − e n 2 k π i = 2 n − 1 i n − 1 exp ( ∑ k = 1 n − 1 n k π i ) ∏ k = 1 n − 1 ( 1 − e n 2 k π i ) = 2 n − 1 i n − 1 e 2 ( n − 1 ) π i n = 2 n − 1 i n − 1 i n − 1 n = 2 n − 1 n ■ see Note
Note that e n 2 k π i = ω is the n th root of unit, which satisfies the following equation.
x n − 1 + x n − 2 + . . . + x + 1 = k = 1 ∏ n − 1 ( x − ω k ) = 0
⟹ k = 1 ∏ n − 1 ( x − ω k ) k = 1 ∏ n − 1 ( 1 − ω k ) = k = 0 ∑ n − 1 x k = k = 0 ∑ n − 1 1 = n