A geometry problem by Akshat Sharda

Geometry Level 4

n = 1 { 1 π k = 1 cot 1 ( 1 + 2 r = 1 k r 3 ) } n = 1 A \displaystyle \sum^{\infty}_{n=1}\left \{ \dfrac{1}{\pi} \sum^{\infty}_{k=1} \cot^{-1} \left ( 1+2 \sqrt{ \sum^{k}_{r=1} r^3 } \right ) \right \}^{n} = \dfrac{1}{A}

Find the value of A A .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Feb 26, 2017

Note that tan 1 ( n + 1 ) tan 1 n = tan 1 ( ( n + 1 ) n 1 + n ( n + 1 ) ) = cot 1 ( 1 + n ( n + 1 ) ) \tan^{-1}(n+1) - \tan^{-1}n \; = \; \tan^{-1}\left(\frac{(n+1)-n}{1 + n(n+1)}\right) \; = \; \cot^{-1}\big(1 + n(n+1)\big) so that k = 1 cot 1 ( 1 + 2 r = 1 k r 3 ) = k = 1 [ tan 1 ( k + 1 ) tan 1 k ] = lim K tan 1 ( K + 1 ) tan 1 1 = 1 4 π \sum_{k=1}^\infty \cot^{-1}\left(1 + 2\sqrt{\sum_{r=1}^k r^3}\right) \; = \; \sum_{k=1}^\infty \big[\tan^{-1}(k+1) - \tan^{-1}k\big] \; =\; \lim_{K \to \infty}\tan^{-1}(K+1) - \tan^{-1}1 \; = \; \tfrac14\pi and so the sum is n = 1 4 n = 1 3 \sum_{n=1}^\infty 4^{-n} \; = \; \tfrac13 making the answer 3 \boxed{3} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...