A geometry problem by Akshat Sharda

Geometry Level 4

A triangle of side 8,8 and 4 has a angle bisector to side of length 8. Find the length of the angle bisector.

If your answer comes as a b c \frac{a\sqrt{b}}{c} with b b square-free, submit your answer as the minimum value of a + b + c a+b+c .


The answer is 17.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Let ABC be the triangle, AB=AC=8, BC=4. A D a l t i t u d e o f I S O S C E L E S Δ . B E t h e a n g l e b i s e c t o r . C o s α = 2 8 = 1 4 . b y t r i . f o r m u l i i , S i n α = 15 4 , S i n α 2 = 3 8 , C o s α 2 = 5 8 S i n ( α + α 2 ) = S i n α C o s α 2 + C o s α S i n α 2 = 3 3 4 2 . . . ( ) Applying Sin Law in Δ E B C , B E S i n α = 4 S i n C E B = 4 ( ) B E = 15 4 4 3 3 4 2 = 4 3 10 = a c b a + b + c = 17 \text{Let ABC be the triangle, AB=AC=8, BC=4.}\\ AD~ altitude~ of~ ~ISOSCELES~~\Delta.~~~~~~BE ~the~ angle~ bisector. \\ Cos\alpha=\dfrac 2 8 =\dfrac 1 4.\\ \therefore by~ tri.~ formulii, Sin\alpha=\dfrac{\sqrt{15}} 4,~~\\ Sin\dfrac \alpha 2=\sqrt{\dfrac 3 8},~~~Cos\dfrac \alpha 2=\sqrt{\dfrac 5 8}\\ \therefore~Sin(\alpha+\dfrac \alpha 2) =Sin\alpha*Cos\dfrac \alpha 2 + Cos\alpha *Sin\dfrac \alpha 2=\dfrac{3\sqrt3}{4\sqrt2}...(**)\\\text{Applying Sin Law in }\Delta~ EBC,\\ \dfrac{BE}{Sin\alpha} =\dfrac 4 {SinCEB}=\dfrac 4 {(**)}\\ \therefore~~~BE= \dfrac{ \sqrt{15}} 4 *\dfrac 4 {\frac{3\sqrt3}{4\sqrt2} }\\ = \dfrac 4 3 *\sqrt{10}=\dfrac a c *\sqrt{b} \\ \therefore~~a+b+c=~~~~~~\large \color{#D61F06}{17}

Great solution ^_^ U p v o t e d ! \huge Upvoted!

Akshat Sharda - 5 years, 9 months ago
Akshat Sharda
Aug 21, 2015

For solving this,

We have a great formula , M a = 2 b × c × s ( s a ) b + c M_{a}=\huge \frac{2\sqrt{b×c×s(s-a)}}{b+c}

Where :

M a M_{a} = Median to side a a .

s s = Semi-perimeter.

Let , a = b = 8 a=b=8 and c = 4 c=4

Therefore ,

M a = 2 8 × 4 × 10 × 2 8 + 4 \Rightarrow M_{a}=\frac{2\sqrt{8×4×10×2}}{8+4}

M a = 16 10 12 = 4 10 3 \Rightarrow M_{a}=\frac{16\sqrt{10}}{12}=\boxed{\frac{4\sqrt{10}}{3}}

Nice formula. Any formula for length of angle bisector?

Niranjan Khanderia - 5 years, 9 months ago

Log in to reply

Actually that was the formula for the angle bisector.

Log in to reply

Thank you. I should have known that !!

Niranjan Khanderia - 5 years ago

As Alan Enrique Ontiveros Salazar points out M a M_a is angle bisector. Please correct.

Niranjan Khanderia - 5 years ago
Ahmad Saad
Aug 6, 2016

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...