△ O A B has an area of 72 and △ O D C has an area of 288. Find x + y .
In the figure above,
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Beautiful, simple, up voted.
C O ∗ O B = D O ∗ O A ⟹ ( x + 1 6 ) ∗ 1 6 = ( y + 1 8 ) ∗ 1 8 . . . . . . . . . . . . ( A ) ∴ y + 1 8 = ( x + 1 6 ) ∗ 9 8 . A r e a Δ O D C A r e a Δ O A B = ( x + 1 6 ) ( y + 1 8 ) 1 6 ∗ 1 8 = 2 8 8 7 2 = 4 1 . . . . . . . . . . ( B ) ∴ y + 1 8 = 4 ∗ 1 6 ∗ 1 8 ∗ x + 1 6 1 . ⟹ ( x + 1 6 ) ∗ 9 8 = 4 ∗ 1 6 ∗ 1 8 ∗ x + 1 6 1 , ⟹ ( x + 1 6 ) 2 = 8 4 ∗ 1 6 ∗ 1 8 ∗ 9 = 1 6 ∗ 8 1 . ∴ x + 1 6 = 4 ∗ 9 , ⟹ x = 2 0 . S u b s t i t u t i n g i n ( A ) 3 6 ∗ 1 6 = ( y + 1 8 ) ∗ 1 8 , ⟹ y = 1 4 . S o x + y = 3 4 .
A O B A = 2 1 ( 1 6 ) ( 1 8 ) ( sin ∠ C O D )
7 2 = 1 4 4 sin ∠ C O D
∠ C O D = 0 . 5
A O D C = 2 1 ( 1 6 + x ) ( 1 8 + y ) ( 0 . 5 )
1 1 5 2 = ( 1 6 + x ) ( 1 8 + y )
1 8 + y = 1 6 + x 1 1 5 2 ( 1 )
By the power of a point, we have
1 6 ( 1 6 + x ) = 1 8 ( 1 8 + y )
Substituting ( 1 ) , we have
1 6 ( 1 6 + x ) = 1 8 ( 1 6 + x 1 1 5 2 )
( 2 5 6 + 1 6 x ) ( 1 6 + x ) = 2 0 7 3 6
4 0 9 6 + 2 5 6 x + 2 5 6 x + 1 6 x 2 = 2 0 7 3 6
1 6 x 2 + 5 1 2 x − 1 6 6 4 0 = 0
x 2 + 3 2 x − 1 0 4 0 = 0
( X + 5 2 ) ( x − 2 0 ) = 0
x = − 5 2 or x = 2 0 reject the negative value
Solving for y , we have
1 8 + y = 1 6 + 2 0 1 1 5 2
1 8 + y = 3 2
y = 1 4
Finally,
x + y = 2 0 + 1 4 = 3 4
Typo 3rd line sin ∠ C O D .
S u b s t i t u t i n g ( 1 ) , w e h a v e 1 6 ( 1 6 + x ) = 1 8 ( 1 6 + x 1 1 5 2 ) ( 1 6 + x ) 2 = 1 6 1 8 ∗ 1 1 5 2 = 3 6 2 ⟹ 1 6 + x = 3 6 , ∴ x = 2 0 .
Problem Loading...
Note Loading...
Set Loading...
By cylic quad angles, ∠ O A B = ∠ O C D , and so, Δ O A B ∼ Δ O C D .
Then, it follows that: O C O A = O D O B = 2 8 8 7 2
1 6 + x 1 8 = 1 8 + y 1 6 = 2 1
Simple algebra yields x = 2 0 , y = 1 4 , so x + y = 3 4 .