Welcome 2016! Part 13

Geometry Level 4

In the figure above, O A B \triangle OAB has an area of 72 and O D C \triangle ODC has an area of 288. Find x + y x+y .


The answer is 34.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Alan Guo
Dec 21, 2015

By cylic quad angles, O A B = O C D \angle OAB = \angle OCD , and so, Δ O A B Δ O C D \Delta OAB \sim \Delta OCD .

Then, it follows that: O A O C = O B O D = 72 288 \dfrac{OA}{OC}=\dfrac{OB}{OD}=\sqrt{\dfrac{72}{288}}

18 16 + x = 16 18 + y = 1 2 \dfrac{18}{16+x}=\dfrac{16}{18+y}=\dfrac{1}{2}

Simple algebra yields x = 20 , y = 14 x=20, y= 14 , so x + y = 34 x+y=34 .

Beautiful, simple, up voted.

Niranjan Khanderia - 3 years, 3 months ago

C O O B = D O O A ( x + 16 ) 16 = ( y + 18 ) 18............ ( A ) y + 18 = ( x + 16 ) 8 9 . A r e a Δ O A B A r e a Δ O D C = 16 18 ( x + 16 ) ( y + 18 ) = 72 288 = 1 4 . . . . . . . . . . ( B ) y + 18 = 4 16 18 1 x + 16 . ( x + 16 ) 8 9 = 4 16 18 1 x + 16 , ( x + 16 ) 2 = 4 16 18 9 8 = 16 81 . x + 16 = 4 9 , x = 20. S u b s t i t u t i n g i n ( A ) 36 16 = ( y + 18 ) 18 , y = 14. S o x + y = 34. CO*OB=DO*OA~~\implies~(x+16)*16=(y+18)*18............(A)~~~~~\therefore~y+18=(x+16)*\dfrac 8 9.\\ \dfrac{Area~\Delta~OAB}{ Area~\Delta~ODC}=\dfrac{16*18}{(x+16)(y+18)}=\dfrac{72}{288}=\frac 1 4..........(B)~~~~~\therefore~y+18=4*16*18*\dfrac 1 {x+16}.\\ \implies~ (x+16)*\dfrac 8 9 =4*16*18*\dfrac 1 {x+16},~~\implies~\sqrt{(x+16)^2}=\sqrt{\dfrac{4*16*18*9} 8}=\sqrt{16*81}.\\ \therefore~~x+16=4*9,~~\implies~~x=20.\\ Substituting~in~(A)~~36*16=(y+18)*18,~~\implies~y=14.\\ So~x+y=\Large~~~~\color{#D61F06}{34}.

A O B A = 1 2 ( 16 ) ( 18 ) ( sin C O D ) A_{OBA}=\dfrac{1}{2}(16)(18)(\sin \angle COD)

72 = 144 sin C O D 72=144 \sin \angle COD

C O D = 0.5 \angle COD=0.5

A O D C = 1 2 ( 16 + x ) ( 18 + y ) ( 0.5 ) A_{ODC}=\dfrac{1}{2}(16+x)(18+y)(0.5)

1152 = ( 16 + x ) ( 18 + y ) 1152=(16+x)(18+y)

18 + y = 1152 16 + x 18+y=\dfrac{1152}{16+x} ( 1 ) \color{#D61F06}(1)

By the power of a point, we have

16 ( 16 + x ) = 18 ( 18 + y ) 16(16+x)=18(18+y)

Substituting ( 1 ) \color{#D61F06}(1) , we have

16 ( 16 + x ) = 18 ( 1152 16 + x ) 16(16+x)=18\left(\dfrac{1152}{16+x}\right)

( 256 + 16 x ) ( 16 + x ) = 20736 (256+16x)(16+x)=20736

4096 + 256 x + 256 x + 16 x 2 = 20736 4096+256x+256x+16x^2=20736

16 x 2 + 512 x 16640 = 0 16x^2+512x-16640=0

x 2 + 32 x 1040 = 0 x^2+32x-1040=0

( X + 52 ) ( x 20 ) = 0 (X+52)(x-20)=0

x = 52 x=-52 or x = 20 x=20 reject the negative value

Solving for y y , we have

18 + y = 1152 16 + 20 18+y=\dfrac{1152}{16+20}

18 + y = 32 18+y=32

y = 14 y=14

Finally,

x + y = 20 + 14 = x+y=20+14= 34 \boxed{34}

Typo 3rd line sin C O D {\color{#D61F06}{\sin}}\angle COD .

S u b s t i t u t i n g ( 1 ) , w e h a v e 16 ( 16 + x ) = 18 ( 1152 16 + x ) ( 16 + x ) 2 = 18 16 1152 = 3 6 2 16 + x = 36 , x = 20. Substituting ~{~\color{#D61F06}~(1)},~ we~ have\\ 16(16+x)=18\left(\dfrac{1152}{16+x}\right) \\ \color{#3D99F6}{(16+x)^2=\dfrac{18}{16}*1152=36^2\\ \implies~16+x=36,~\therefore~x=20.}

Niranjan Khanderia - 3 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...