A geometry problem by Anuj Shikarkhane

Geometry Level 2

Evaluate :

1 sin θ 1 + sin θ \large\sqrt{\dfrac{1-\sin\theta}{1+\sin\theta}}

tan θ sec θ \tan\theta - \sec\theta sec θ tan θ \sec \theta- \tan\theta sec θ cot θ \sec\theta - \cot\theta

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Marta Reece
Jun 5, 2017

Great solution! I am impressed by its beauty ;) One question: How can we derivate (1 - sin^2) from (1 + sin) * (1 - sin)?

Alex Waldherr - 1 year, 10 months ago
Maximos Stratis
Jun 5, 2017

We take 1 sin θ 1 + sin θ \sqrt{\frac{1-\sin{\theta}}{1+\sin{\theta}}} and multiply numerator and denominator by 1 sin θ 1-\sin{\theta}
( 1 sin θ ) 2 1 sin 2 θ = \sqrt{\frac{(1-\sin{\theta})^{2}}{1-\sin^{2}{\theta}}}=
( 1 sin θ ) 2 cos 2 θ = \sqrt{\frac{(1-\sin{\theta})^{2}}{\cos^{2}{\theta}}}=
1 sin θ cos θ = \frac{1-\sin{\theta}}{\cos{\theta}}=
1 cos θ sin θ cos θ = \frac{1}{\cos{\theta}}-\frac{\sin{\theta}}{\cos{\theta}}=
sec θ tan θ \boxed{\sec{\theta}-\tan{\theta}}


0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...