Simple Trigonometry

Geometry Level 3

If sin x + cos x = 7 5 \sin x + \cos x = \dfrac75 , and 1 sin x + 1 cos x = a b \dfrac1{\sin x} + \dfrac1{\cos x} = \dfrac ab , where a a and b b are coprime positive integers, find a + b a+b .


The answer is 47.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ashish Gupta
Apr 11, 2016

1 sin x + 1 cos x = sin x + cos x sin x cos x \frac{1}{\sin x}+\frac{1}{\cos x} =\frac{\sin x+\cos x}{\sin x\cos x} = 2 sin x + cos x 2 sin x cos x = 2 sin x + cos x ( sin x + cos x ) 2 1 =2\cdot \frac{\sin x+\cos x}{2\sin x\cos x} =2\cdot \frac{\sin x+\cos x}{(\sin x+\cos x)^2-1}

We know sin x + cos x = 7 5 \sin x+\cos x=\frac{7}{5} , so:

1 sin x + 1 cos x = 2 7 5 ( 7 5 ) 2 1 = 35 12 \frac{1}{\sin x}+\frac{1}{\cos x} = 2\cdot \frac{\frac 75}{\left(\frac{7}{5}\right)^2-1} =\frac{35}{12}

So, a = 35 a =35 and b = 12 b=12 . a + b = 47 a+b=47 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...