But What If sin A cos A = 0 \sin A \cos A = 0 ?

Geometry Level 3

( 1 + cot A csc A ) ( 1 + tan A + sec A ) \large (1 + \cot A - \csc A )(1 + \tan A + \sec A )

If A A can be any angle such that sin A cos A 0 \sin A \cos A \ne 0 , simplify the trigonometric expression above.

-2 -1 0 1 2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ashrit Ramadurgam
Mar 25, 2016

( 1 + cot A csc A ) ( 1 + tan A + sec A ) (1 + \cot A - \csc A)(1 + \tan A + \sec A) = ( 1 + cos A sin A 1 sin A ) ( 1 + sin A cos A + 1 cos A ) =\Big( 1 + \frac{\cos A}{\sin A} - \frac{1}{\sin A} \Big) \Big( 1 + \frac{\sin A}{\cos A} + \frac{1}{\cos A} \Big) = ( sin A + cos A 1 sin A ) ( sin A + cos A + 1 cos A ) =\Big( \frac{\sin A + \cos A - 1}{\sin A} \Big) \Big( \frac{\sin A + \cos A + 1}{\cos A} \Big) = ( sin A + cos A ) 2 1 2 sin A cos A =\frac{(\sin A + \cos A)^2 - 1^2}{\sin A \cos A} = sin 2 A + cos 2 A + 2 sin A cos A 1 sin A cos A =\frac{\sin ^2A + \cos ^2A + 2 \sin A \cos A - 1}{\sin A \cos A} = 1 + 2 sin A cos A 1 sin A cos A [ sin 2 A + cos 2 A = 1 ] =\frac{1 + 2 \sin A \cos A - 1}{\sin A \cos A} \cdots \big[ \because \sin ^2A + \cos ^2A = 1 \big] = 2 sin A cos A sin A cos A =\frac{2 \sin A \cos A}{\sin A \cos A} = 2 [ sin A cos A 0 ] =\boxed{2} \cdots \big[ \because \sin A \cos A \ne 0 \big]

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...