Concentric Circles Equally Split This Chord

Geometry Level 5

Let [ A ] [A] denote the area of circle A A . Suppose that 10 10 concentric circles O 1 , O 2 , , O 10 O_1,O_2,\ldots,O_{10} satisfy [ O i ] > [ O i + 1 ] [O_i] > [O_{i+1}] for all i = 1 9 i=1\to 9 . Also, a chord drawn in circle O 1 O_1 has the property that circles O 2 O 10 O_2\to O_{10} cut it into 19 19 equal sections. The chord has length 2014 2014 , and [ O 1 ] + [ O 2 ] + [ O 3 ] + + [ O 10 ] < 20140000 [O_1]+[O_2]+[O_3]+\cdots +[O_{10}]<20140000

What is the largest possible integer value of the radius of O 10 O_{10} ?

You are permitted to use a scientific calculator.


The answer is 519.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Eloy Machado
Apr 3, 2014

We can use Stewart´s Theorem to find r 9 , r 8 , . . . . , r 1 { r }_{ 9 }, { r }_{ 8 }, ...., { r }_{ 1 } in terms of r 10 { r }_{ 10 } . Then:

r 9 2 = r 10 2 + 2 106 2 { { r }_{ 9 } }^{ 2 }={ { r }_{ 10 } }^{ 2 }+2\cdot { 106 }^{ 2 }

r 8 2 = r 10 2 + 6 106 2 { { r }_{ 8 } }^{ 2 }={ { r }_{ 10 } }^{ 2 }+6\cdot { 106 }^{ 2 }

...

r 1 2 = r 10 2 + 90 106 2 { { r }_{ 1 } }^{ 2 }={ { r }_{ 10 } }^{ 2 }+90\cdot { 106 }^{ 2 }

Then

[ O 1 ] + . . . + [ O 10 ] = π ( r 1 2 + . . . + r 10 2 ) = π ( 10 r 10 2 + 330 106 2 ) [{ O }_{ 1 }]+...+[{ O }_{ 10 }]=\pi \cdot \left( { { r }_{ 1 } }^{ 2 }+...+{ { r }_{ 10 } }^{ 2 } \right) =\pi \cdot \left( { { 10\cdot r }_{ 10 } }^{ 2 }+330\cdot { 106 }^{ 2 } \right)

and solving

π ( 10 r 10 2 + 330 106 2 ) < 20140000 \pi \cdot \left( { { 10\cdot r }_{ 10 } }^{ 2 }+330\cdot { 106 }^{ 2 } \right) <20140000

for r 10 {r}_{10} , it gives that r 10 < 519 , 89 { r }_{ 10 }<519,89 . So, the largest INTEGER possible for r 10 {r}_{10} is 519 \boxed{519} .

Such a simple question . I didn't solve it!

Vinu Unnikrishnan - 7 years, 2 months ago

Ah yes, Stewart's Theorem also works. Thanks for the solution!

Daniel Liu - 7 years, 2 months ago

Since the total chord length is 2014, half of this forms a right triangle with one side of length 1007, the other side vertical equal to the displacement of the secant line from the centers and hypotenuse r 10. How can r 10 be less than 1007? What am I missing or misunderstanding?

A Former Brilliant Member - 7 years, 2 months ago

Log in to reply

r 10 { r }_{ 10 } is the smallest radius; r 1 { r }_{ 1 } is the biggest one.

Eloy Machado - 7 years, 2 months ago
Daniel Liu
Mar 26, 2014

For this problem, knowledge of Holditch's Theorem helps.

The length of each equally divided segment is 2014 19 = 106 \dfrac{2014}{19}=106 .

Let the radius of O 10 O_{10} be r r .

We have that [ O 9 ] = [ O 10 ] + area of annulus between the two circles [O_9]=[O_{10}]+\text{area of annulus between the two circles} .

By Holditch's Theorem, the area of the annulus is ( 106 1 ) ( 106 2 ) π (106\cdot 1)\cdot (106\cdot 2)\cdot \pi .

Similarly, [ O 8 ] = [ O 10 ] + area of annulus between the two circles [O_8]=[O_{10}]+\text{area of annulus between the two circles} .

By Holditch's, the area of this annulus is ( 106 2 ) ( 106 3 ) π (106\cdot 2)\cdot (106\cdot 3)\cdot \pi .

We continue on in this manner, until we find that [ O 1 ] + [ O 2 ] + + [ O 10 ] = 10 [ O 10 ] + 10 6 2 π ( 1 2 + 2 3 + + 9 10 ) [O_1]+[O_2]+\cdots +[O_{10}]=10[O_{10}]+106^2\pi(1\cdot 2+2\cdot 3+\cdots +9\cdot 10) .

Since [ O 10 ] = π r 2 [O_{10}]=\pi r^2 , we have that 10 π r 2 + 3707880 π < 20140000 10\pi r^2+3707880\pi < 20140000 .

Solving for r r gives that r < 519.892 r<519.892 , so our answer is 519 \boxed{519} .

You should specify in the problem that you want an integer. For this problem I basically used median length theorem to calculate the individual radii starting at circle 9 1 9\rightarrow 1 in terms of the radius of circle 10 10 and ended up with the same equation that you had. Anyway this is another quality problem! Thank you..

Xuming Liang - 7 years, 2 months ago

Log in to reply

Ah shoot, how did I forget to add integer? Thankfully, the answer has to be an integer, so it was implied. I have fixed it now, thanks.

Also, glad you liked the problem! :)

Daniel Liu - 7 years, 2 months ago

Sorry for the kind of speedy and badly written solution. I did not have that much time to write it. I will try to make it better if I can find more time and remember to write it.

Daniel Liu - 7 years, 2 months ago

Some bits of computation involved though

Matthew Fan - 7 years, 2 months ago
Uahbid Dey
Apr 6, 2014

let, r 10 = r r_{10}=r and here, chord length of the smallest circle is x = 2014 19 = 106 x=\frac{2014}{19}=106 now, r 9 = r 2 + 2 x 2 r_{9}=\sqrt{r^{2}+2x^{2}} r 8 = r 2 + 6 x 2 r_{8}=\sqrt{r^{2}+6x^{2}} r 7 = r 2 + 12 x 2 r_{7}=\sqrt{r^{2}+12x^{2}} r 6 = r 2 + 20 x 2 r_{6}=\sqrt{r^{2}+20x^{2}} ................... According to the question, [ O 10 ] + [ O 9 ] + [ O 8 ] + [ O 7 ] + . . . . . . + [ O 1 ] < 20140000 [O_{10}]+[O_{9}]+[O_{8}]+[O_{7}]+......+[O_{1}]<20140000 = > π r 2 + π ( r 2 + 2 x 2 ) + π ( r 2 + 6 x 2 ) + . . . < 20140000 => \pi r^{2}+\pi \left ( r^{2}+2x^{2} \right )+\pi \left ( r^{2}+6x^{2} \right )+... <20140000 = > r 2 + ( r 2 + 2 x 2 ) + ( r 2 + 6 x 2 ) + . . . < 20140000 π => r^{2}+\left ( r^{2}+2x^{2} \right )+\left ( r^{2}+6x^{2} \right )+... <\frac{20140000}{\pi } = > 10 r 2 + x 2 { 2 + 6 + 12 + 20 + . . . + n ( n + 1 ) } < 6410761.1077 => 10r^{2}+x^{2}\left \{ 2+6+12+20+...+n(n+1) \right \}<6410761.1077 = > 10 r 2 + x 2 n = 1 9 n ( n + 1 ) < 6410761.1077 => 10r^{2}+x^{2} \sum_{n=1}^{9}n(n+1)<6410761.1077 = > 10 r 2 + x 2 ( n 3 3 + n 2 + 2 n 3 ) < 6410761.1077 [ n = 9 ] => 10r^{2}+x^{2} \left (\frac{n^{3}}{3}+n^{2}+\frac{2n}{3}\right )<6410761.1077 \; [n=9] = > 10 r 2 + 10 6 2 × 330 < 6410761.1077 => 10r^{2}+106^{2}\times 330<6410761.1077 now, solving and considering integer value we get 519

Hosam Hajjir
Apr 6, 2014

Length of secant segment inside Circle i,

d ( i ) = d ( 1 ( 2 ( i 1 ) / 19 ) ) = 2014 ( 1 2 ( i 1 ) / 19 ) = 106 ( 21 2 i ) d(i) = d(1 - (2( i-1) / 19 )) = 2014 ( 1 - 2 (i -1)/19 ) = 106 (21 - 2 i )

Since the normal to the secant from the center is equal for all circles,

r ( i ) 2 ( d ( i ) / 2 ) 2 = c o n s t a n t , f o r i = 1 , 2 , . . . , 10 r(i)^2 - (d(i)/2)^2 = constant, for i = 1, 2, ..., 10

Therefore

r ( i ) 2 = c o n s t a n t + ( d ( i ) / 2 ) 2 , f o r i = 1 , 2 , . . . . , 10 r(i)^2 = constant + (d(i)/2)^2, for i = 1, 2, ...., 10

π i = 1 10 ( r ( i ) 2 ) = 10 π ( c o n s t a n t ) + π s u m i = 1 10 ( ( d ( i ) / 2 ) 2 ) \pi \sum_{i=1}^{10} ( r(i)^2 ) = 10 \pi (constant) + \pi sum_{i=1}^{10} ( (d(i)/2)^2 )

π i = 1 10 ( r ( i ) 2 ) = 10 π ( c o n s t a n t ) + π ( 53 ) 2 ( 441 ( 10 ) 84 ( 10 ) ( 11 ) / 2 + 4 / 6 ( 10 ) ( 11 ) ( 21 ) ) < 20140000 \pi \sum_{i=1}^{10} ( r(i)^2 ) = 10 \pi (constant) + \pi (53)^2 ( 441 (10) - 84 (10)(11)/2 + 4/6 (10)(11)(21) ) < 20140000

c o n s t a n t < 267479.11077415441 constant < 267479.11077415441

r ( 10 ) = c o n s t a n t + ( d ( 10 ) / 2 ) 2 < 267479.11077415441 + ( 53 ) 2 = 519.89 r(10) = \sqrt { constant + (d(10)/2)^2 } < \sqrt { 267479.11077415441 + (53)^2 } = 519.89

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...