Threatening Trigonometry

Geometry Level 4

cos 4 π 7 + cos 4 3 π 7 + cos 4 5 π 7 \cos^{ 4} \dfrac{\pi}{7} + \cos^{4} \dfrac{ 3 \pi}{7} + \cos^{4} \dfrac{5 \pi}{7}

If the above expression is equals to a b \dfrac {a}{b} where a a and b b are coprime positive.

Find a + b a+b .

Image Credit: Wikimedia Heptagon by SoluS


The answer is 29.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

With the identity cos ( θ ) = c o s ( π θ ) \cos(\theta) = -cos(\pi-\theta) we can rewrite the expression as:

cos 4 2 π 7 + cos 4 4 π 7 + cos 4 6 π 7 \cos^4 \dfrac{2\pi}{7}+\cos^4 \dfrac{4\pi}{7}+\cos^4 \dfrac{6\pi}{7}

Now, we are going to find an equation with roots cos 2 π 7 \cos \dfrac{2\pi}{7} , cos 4 π 7 \cos \dfrac{4\pi}{7} and cos 6 π 7 \cos \dfrac{6\pi}{7} . Let w 7 = 1 w^7=1 , so ( w 1 ) ( w 6 + w 5 + w 4 + w 3 + w 2 + w + 1 ) = 0 (w-1)(w^6+w^5+w^4+w^3+w^2+w+1)=0 .

Let's focus only on the second factor. Divide both sides by w 3 w^3 :

w 3 + w 2 + w + 1 + 1 w + 1 w 2 + 1 w 3 = 0 w 3 + 1 w 3 + w 2 + 1 w 2 + w + 1 w + 1 = 0 w 3 + 3 ( w + 1 w ) + 1 w 3 + w 2 + 2 + 1 w 2 + w + 1 w + 1 3 ( w + 1 w ) 2 = 0 w^3+w^2+w+1+\dfrac{1}{w}+\dfrac{1}{w^2}+\dfrac{1}{w^3}=0 \\ w^3+\dfrac{1}{w^3}+w^2+\dfrac{1}{w^2}+w+\dfrac{1}{w}+1=0 \\ w^3+3\left(w+\dfrac{1}{w}\right)+\dfrac{1}{w^3}+w^2+2+\dfrac{1}{w^2}+w+\dfrac{1}{w}+1-3\left(w+\dfrac{1}{w}\right)-2=0

Factorize and simplify:

( w + 1 w ) 3 + ( w + 1 w ) 2 2 ( w + 1 w ) 1 = 0 \left(w+\dfrac{1}{w}\right)^3+\left(w+\dfrac{1}{w}\right)^2-2\left(w+\dfrac{1}{w}\right)-1=0

Now, since w 7 = 1 w^7=1 , lets choose the first primitive root, so, w = e 2 π 7 w=e^\frac{2\pi}{7} and w + 1 w = 2 cos 2 π 7 w+\dfrac{1}{w}=2\cos\dfrac{2\pi}{7} . But, if we choose the second root, w + 1 w = 2 cos 4 π 7 w+\dfrac{1}{w}=2\cos \dfrac{4\pi}{7} and if we choose the third root, w + 1 w = 2 cos 6 π 7 w+\dfrac{1}{w}=2\cos \dfrac{6\pi}{7} . If we choose the other roots, we obtain the same results. So, let x = w + 1 w x=w+\dfrac{1}{w} :

x 3 + x 2 2 x 1 = 0 x^3+x^2-2x-1=0

That equation has roots 2 cos 2 π 7 2 \cos \dfrac{2\pi}{7} , 2 cos 4 π 7 2 \cos \dfrac{4\pi}{7} and 2 cos 6 π 7 2 \cos \dfrac{6\pi}{7} , so let x = 2 y x=2y :

8 y 3 + 4 y 2 4 y 1 = 0 y 3 + 1 2 y 2 1 2 y 1 8 = 0 8y^3+4y^2-4y-1=0 \Longrightarrow y^3+\dfrac{1}{2}y^2-\dfrac{1}{2}y-\dfrac{1}{8}=0 .

This is the equation we wanted. Finally, we can apply Newton's Sums to obtain the initial expression:

P n = cos n 2 π 7 + cos n 4 π 7 + cos n 6 π 7 P 1 = 1 2 P 2 = 1 2 P 1 2 ( 1 2 ) = 5 4 P 3 = 1 2 P 2 ( 1 2 ) P 1 3 ( 1 8 ) = 1 2 P 4 = 1 2 P 3 ( 1 2 ) P 2 ( 1 8 ) P 1 = 13 16 P_n=\cos^n \dfrac{2\pi}{7}+\cos^n \dfrac{4\pi}{7}+\cos^n \dfrac{6\pi}{7} \\ P_1=-\dfrac{1}{2} \\ P_2=-\dfrac{1}{2}P_1-2\left(-\dfrac{1}{2}\right)=\dfrac{5}{4} \\ P_3=-\dfrac{1}{2}P_2-\left(-\dfrac{1}{2}\right)P_1-3\left(-\dfrac{1}{8}\right)=-\dfrac{1}{2} \\ P_4=-\dfrac{1}{2}P_3-\left(-\dfrac{1}{2}\right)P_2-\left(-\dfrac{1}{8}\right)P_1=\boxed{\dfrac{13}{16}}

So, a = 13 a=13 , b = 16 b=16 and a + b = 29 a+b=\boxed{29} .

汶良 林
Jul 23, 2015

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...