Short & Simple Trig

Geometry Level 2

Given α , β ( 0 , π / 2 ) \alpha,\beta \in (0,\pi/2) .

If tan β = cot α 1 cot α + 1 \displaystyle \tan \beta=\frac{\cot \alpha -1}{\cot \alpha +1} ,

find α + β \alpha + \beta .

π \pi π 3 \dfrac{\pi}{3} π 4 \dfrac{\pi}{4} 2 π 3 \dfrac{2\pi}{3} π 6 \dfrac{\pi}{6}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Danish Ahmed
Jun 23, 2015

tan β = 1 tan α 1 + tan α \tan\beta=\dfrac{1-\tan\alpha}{1+\tan\alpha}

tan α tan β + tan β = 1 tan α \tan\alpha\tan\beta+\tan\beta=1-\tan\alpha

tan α + tan β = 1 tan α tan β \tan\alpha+\tan\beta=1-\tan\alpha\tan\beta

tan α + tan β 1 tan α tan β = 1 \dfrac{\tan\alpha+\tan\beta}{1-\tan\alpha\tan\beta}=1

tan ( α + β ) = 1 \tan(\alpha+\beta)=1

α + β = π 4 \alpha+\beta=\dfrac{\pi}{ 4}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...