Inspired by Keen Mun

Geometry Level 5

There are 1 bigger circle and 2 same size circles inscribed in an ellipse. The two red points are the foci of the ellipse. Find the ratio of areas A : B A:B .

Give your answer to 3 significant figures.


The answer is 0.04289.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

In normal notation, let a be semimajor axis, b semiminor axis and distance between focii as 2c. R A a n d R B t h e r a d i i . W e k n o w t h a t a 2 = b 2 + c 2 . B u t i n t h i s p r o b l e m R A = b = c , a 2 = 2 R A 2 = 2 c 2 . a = 2 R A . W e a l s o s a w c = R A . . . . . . . N o w h e r e w e h a v e 2 R B = a c , R B = 1 2 ( a c ) = . . . . . 1 2 ( 2 R A R A ) = 1 2 ( 2 1 ) R A . S o t h e r a t i o s o f a r e a s = π R B 2 π R A 2 = { 1 2 ( 2 1 ) R A ) } 2 R A 2 = 1 4 ( 3 2 2 ) . T h e r a t i o s o f a r e a s = 0.0428932 \text{In normal notation, let a be semimajor axis, b semiminor axis and distance between focii as 2c.}\\ R_A\ \ and\ \ R_B\ the\ radii.\\ We\ know\ that \ \ a^2\ =\ b^2\ +\ c^2.\ \ \ But\ in\ this\ problem\ R_A=b=c,\ \ \implies\ a^2\ =\ 2R_A^2=2c^2.\\ \implies\ \ a=\sqrt2*R_A.\ \ \ We\ also\ saw\ \ \ c=R_A.\ \ .....\color{#3D99F6}{*}.\\ Now\ here\ we\ have\ \ 2R_B= a - c,\ \ \implies R_B=\frac 1 2*(a - c)=.....\color{#3D99F6}{*} \frac 1 2*(\sqrt2{R_A} - R_A)=\frac 1 2(\sqrt2 - 1)R_A.\\ So\ the\ ratios\ of\ areas\ =\dfrac{\pi*R_B^2} {\pi*R_A^2}=\dfrac{\{\frac 1 2(\sqrt2 - 1)R_A)\}^2} {R_A^2}=\frac 1 4 *(3 - 2\sqrt2).\\ The\ ratios\ of\ areas= \color{#D61F06}{0.0428932}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...