A geometry problem by Francois Tardieu

Geometry Level 3

ABCD is a square paper. A B = 12 AB=12 .

ABCD is folded so that point C C comes to I I middle point of segment A B AB .

Determine area of the quadrilateral IJKM.


The answer is 52.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Francois Tardieu
Oct 24, 2016

We define: J C = x JC=x and J B = 12 x JB=12-x so, I J = x IJ=x and we have, A I = I B = 6 AI=IB=6

with Pythagoras in triangle IBJ

I J 2 = I B 2 + J B 2 IJ^2=IB^2+JB^2

x 2 = 6 2 + ( 12 x ) 2 x 2 = 36 + 144 24 x + x 2 24 x = 180 x = 15 2 = 7 , 5 \Longleftrightarrow x^2=6^2+(12-x)^2 \Longleftrightarrow x^2= 36+144-24x+x^2 \Longleftrightarrow 24x= 180 \Longleftrightarrow x=\dfrac{15}{2}=7,5

Then I J = x = 7 , 5 IJ=x= 7,5 and J B = 12 x = 4 , 5 JB=12-x=4,5

we note, with the help of complimentary angles, that:

I J B ^ = A I M ^ = L K M ^ \widehat{IJB}= \widehat{AIM} =\widehat{LKM} (1)

and

B I J ^ = A M I ^ = L M K ^ \widehat{BIJ}= \widehat{AMI} =\widehat{LMK} (2)

Let's say that: L M = y LM=y and L K = z LK=z so we get M I = 12 y MI=12-y

and with help of (1)

cos A I M ^ = cos I J B ^ I A I M = 6 12 y 4 , 5 7 , 5 = 6 12 y 3 ( 12 y ) = 30 y = 2 \cos \widehat{AIM}=\cos \widehat{IJB}\Longleftrightarrow \dfrac{IA}{IM}= \dfrac{6}{12-y} \Longleftrightarrow \dfrac{4,5}{7,5}=\dfrac{6}{12-y} \Longleftrightarrow 3(12-y)=30 \Longleftrightarrow y=2

and with help of (2)

tan L M K ^ = tan B I J ^ z 2 = 4 , 5 6 z = 1 , 5 \tan \widehat{LMK} = \tan \widehat{BIJ} \Longleftrightarrow \dfrac{z}{2}=\dfrac{4,5}{6} \Longleftrightarrow z= 1,5

we can compute areas now:

area(IJKL) = 1 2 × ( L K + I J ) × L I = 1 2 × ( 1 , 5 + 7 , 5 ) × 12 = 54 = \dfrac{1}{2} \times (LK+IJ) \times LI =\dfrac{1}{2} \times (1,5+7,5) \times 12 =54

area(LKM) = 1 2 × L K × L M = 1 2 × 1 , 5 × 2 = 1 , 5 = \dfrac{1}{2} \times LK \times LM = \dfrac{1}{2} \times 1,5 \times 2 = 1,5

area(IJKM)=area(IJKL) -area(LKM) = 54 1 , 5 = 52 , 5 =54-1,5=52,5

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...