A geometry problem by Francois Tardieu

Geometry Level 3

Given that E , D , C E, D, C are on a straight line.
And A B = H D = 0.5 m AB=HD=0.5\text{ m} , B D = 4 m BD=4\text{ m} .

Find the minimum angle of x x (in degrees) such that it minimizes the length E C EC .

Give your answer to 2 decimal places.


The answer is 63.43.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Francois Tardieu
Oct 16, 2016

We want to minimize the length: E C = E D + D C EC= ED+DC and 0 < x < π 2 0 < x < \dfrac{\pi}{2}

in Δ D B C \Delta DBC

sin x = B D D C \sin x = \dfrac{BD}{DC} , so we get, D C = 4 sin x DC=\dfrac{4}{\sin x }

in Δ E H D \Delta EHD

cos x = H D E D \cos x = \dfrac{HD}{ED} , so we get, E D = 0 , 5 cos x ED=\dfrac{0,5}{\cos x }

E C = f ( x ) = 0 , 5 cos x + 4 sin x EC= f(x)=\dfrac{0,5}{\cos x } +\dfrac{4}{\sin x }

f ( x ) = 0 , 5 sin x cos 2 x + 4 cos x sin 2 x = 0 , 5 sin 3 x + 4 cos 3 x cos 2 x sin 2 x f'(x)=\dfrac{-0,5\sin x} {\cos^2 x }+\dfrac{4 \cos x} {\sin^2 x }= \dfrac{-0,5\sin^3 x+4\cos^3 x } {\cos^2 x \sin^2 x}

f ( x ) = 0 0 , 5 sin 3 x + 4 cos 3 x = 0 0 , 5 sin 3 x = 4 cos 3 x tan 3 x = 4 0 , 5 = 8 = 2 3 f'(x)=0 \Longleftrightarrow -0,5\sin^3 x+4\cos^3 x=0 \Longleftrightarrow 0,5\sin^3 x=4\cos^3 x \Longleftrightarrow \tan^3 x= \dfrac{4 } {0,5}=8=2^3

We get, tan x = 2 \tan x= 2

and, x = tan 1 2 x= \tan^{-1} 2

x 63 , 4 3 o x\simeq 63,43^o

Note that the problem states "minimize the length ED". Is this a typo?

Calvin Lin Staff - 4 years, 8 months ago

hi, yes it EC to minimize. need to fix the solution too at 63.43^o

have a good day

Francois Tardieu - 4 years, 8 months ago

Log in to reply

Thanks. I've updated the problem and answer accordingly.

Calvin Lin Staff - 4 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...