A problem by fred fan

Level 1

In the diagram shown, P QR is a straight line segment. The measure of ∠QSR is

35 25 40 30 45

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

By the exterior angle theorem, we have

75 = Q S R + 30 75=\angle QSR + 30

Q S R = 75 30 = 4 5 \angle QSR = 75-30=\boxed{45^\circ}

A straight line is 180 degrees. So angle SQR = 180 - 75 = 105 degrees. \text{A straight line is 180 degrees. So angle SQR = 180 - 75 = 105 degrees.} The sum of interior angles of a triangle is 180 degrees, so angle QSR = 180 - 105 - 30 = 45 degrees. \text{The sum of interior angles of a triangle is 180 degrees, so angle QSR = 180 - 105 - 30 = 45 degrees.}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...