A geometry problem by Hana Wehbi

Geometry Level 3

In the diagram, two circles, each with centre D D , have radii of 1 and 2. The total area of the shaded regions is 5 12 \frac{5} {12} of the area of the larger circle. What is a possible measure A D C \angle ADC in degrees?

100 110 135 120 90

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Toshit Jain
Mar 18, 2017

A r e a o f s h a d e d r e g i o n = A r e a o f s e c t o r A D C A r e a o f m i n o r s e c t o r i n s m a l l c i r c l e Area \space of \space shaded \space region \space=\space Area \space of \space sector \space ADC \space-\space Area \space of\space minor \space sector \space in \space small \space circle + A r e a o f m a j o r s e c t o r i n s m a l l c i r c l e \space+\space Area \space of \space major \space sector\space in \space small \space circle 1 \space \space \space -\space \boxed{1}

L e t A D C = x ° Let \space \angle{ADC} \space=\space x°

A r e a o f l a r g e r c i r c l e = π ( 2 ) 2 = 4 π Area \space of \space larger \space circle \space = \space \pi\space(2)^{2}\space =\space 4\pi

A r e a o f s m a l l e r c i r c l e = π ( 1 ) 2 = π Area \space of \space smaller \space circle \space = \space \pi\space(1)^{2}\space =\space \pi

A r e a o f s e c t o r A D C = x 360 × 4 π Area \space of \space sector \space ADC \space= \space \frac{x}{360}\times 4\pi

A r e a o f m i n o r s e c t o r i n s m a l l e r c i r c l e = x 360 × π Area \space of \space minor \space sector \space in \space smaller \space circle \space= \space \frac{x}{360} \times \pi

A r e a o f m a j o r s e c t o r i n s m a l l e r c i r c l e = 360 x 360 × π Area \space of \space major \space sector \space in \space smaller \space circle \space= \space \frac{360-x}{360} \times \pi

P u t t i n g t h e v a l u e s i n e q 1 Putting \space the \space values \space in \space eq \space 1

5 12 × 4 π = 4 π x 360 π x 360 + ( 360 x ) π 360 \rightarrow \space \frac{5}{12} \space\times \space4\pi \space= \space \frac{4\pi\space x}{360} \space-\space \frac{\pi\space x }{360} \space+\space \frac{(360-x)\space\pi}{360}

A f t e r s o l v i n g , w e w i l l g e t x = 120 ° After \space solving \space, \space we \space will \space get \space x \space=\space 120°

A D C = 120 ° \therefore \space \boxed{\angle{ADC} \space=\space 120°}

Nice. Thank you.

Hana Wehbi - 4 years, 2 months ago

@Hana Nakkache Welcome :) Is there any easier way coz this one is little bit time consuming?

Toshit Jain - 4 years, 2 months ago

Log in to reply

I will post my solution tomorrow, maybe you will find it easier.

Hana Wehbi - 4 years, 2 months ago

Log in to reply

Can you please post your solution? I did it with this way but it is a little time-consuming.. is there any other easier method than this?

Rahil Sehgal - 4 years, 2 months ago

I did post my solution.

Hana Wehbi - 4 years, 2 months ago
Hana Wehbi
Apr 1, 2017

The total area of the larger circle is 4 π 4\pi , thus the area of the shaded region must be 5 12 o f 4 π = 5 3 π \frac{5}{12} of 4\pi = \frac{5}{3}\pi .

Suppose A D C = y \angle ADC =y ,

The area of the unshaded portion of the inner circle is thus y 360 \frac{y}{360} of the total area of the

inner circle, or y 360 ( π ( 1 2 ) ) = y 360 π \frac{y}{360}(\pi(1^2))= \frac{y}{360}\pi , since A D C i s y 360 \angle ADC is \frac{y}{360} of the largest possible central angle 360 360 .

The area of the shaded portion of the inner circle is thus π y 360 π = 360 y 360 π \pi-\frac{y}{360}\pi= \frac{360-y}{360}\pi .

The total area of the outer ring is the difference of the areas of the outer and inner circles, or. π ( 2 2 ) π ( 1 2 ) = 3 π \pi(2^2)-\pi(1^2)=3\pi .

The shaded area in the outer ring will be y 360 \frac{y}{360} of this total area, since A D C \angle ADC is y 360 \frac{y}{360} of the largest possible central angle 360 360 .

So the shaded area of the outer ring is y 360 ( 3 π ) \frac{y}{360}(3\pi) = 3 y 360 π \frac{3y}{360}\pi .

So the total shaded area (which must be equal to 5 3 π \frac{5}{3}\pi , interms of y y is:

3 y 360 π + 360 y 360 π = 360 + 2 x 360 π \frac{3y}{360}\pi+\frac{360-y}{360}\pi= \frac{360+2x}{360}\pi .

Therefore 360 + 2 y 360 = 5 3 = 600 360 , so 360 + 2 y = 600 o r y = 120 \frac{360+2y}{360}=\frac{5}{3}=\frac{600}{360}, \text {so} \ 360+2y=600 \text \ {or} \ y=120 .

Thus A D C = 120 \angle ADC = 120 .

Keep in mind all angles are in degrees.

@Hana Nakkache What have you done?

Toshit Jain - 4 years, 2 months ago

Log in to reply

I will provide explanation, I don't think there is a simpler way than your solution.

Hana Wehbi - 4 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...