Sum it Square it

Geometry Level 3

If tan A , tan B \tan A, \tan B are roots of x 2 P x + Q = 0 x^{2} - Px + Q = 0 the value of sin 2 ( A + B ) \sin^{2}(A+B) is?

Note: P , Q P,Q are real numbers.

To try more such problems click here .
P 2 P 2 + ( 1 Q ) 2 \frac{P^{2}}{P^{2} + (1-Q)^{2}} P 2 P 2 + Q 2 \frac{P^{2}}{P^{2} + Q^{2}} P 2 ( P + Q ) 2 \frac{P^{2}}{(P + Q)^{2}} P 2 Q 2 + ( 1 Q ) 2 \frac{P^{2}}{Q^{2} + (1-Q)^{2}}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Qi Huan Tan
Jan 19, 2015

From the question, we get P = t a n A + t a n B P=tanA+tanB and Q = t a n A t a n B Q=tanAtanB .

Hence, t a n ( A + B ) = t a n A + t a n B 1 t a n A t a n B = P 1 Q tan(A+B)=\frac{tanA+tanB}{1-tanAtanB}=\frac{P}{1-Q} .

By Pythagorean identity, s i n 2 θ + c o s 2 θ = 1 sin^2\theta+cos^2\theta=1 .

Also, s i n 2 θ c o s 2 θ = t a n 2 θ \frac{sin^2\theta}{cos^2\theta}=tan^2\theta .

Combining the two equations, we get s i n 2 θ = t a n 2 θ t a n 2 θ + 1 sin^2\theta=\frac{tan^2\theta}{tan^2\theta+1} .

Therefore, s i n 2 ( A + B ) = t a n 2 ( A + B ) t a n 2 ( A + B ) + 1 = ( P 1 Q ) 2 ( P 1 Q ) 2 + 1 = P 2 P 2 + ( 1 Q ) 2 sin^2(A+B)=\frac{tan^2(A+B)}{tan^2(A+B)+1}=\frac{(\frac{P}{1-Q})^2}{(\frac{P}{1-Q})^2+1}=\frac{P^2}{P^2+(1-Q)^2} .

Nabhanshul Satra
Jan 14, 2015

Here tan (a) +tan (b)=p and tan (a)×tan( b)=q . Substituting tan (a) by sin (a)/cos (a) and tan (b )by sin (b)/cos (b) in tan (a)+tan (b)=p, we get: sin (a) cos (b)+ cos (a) sin (b)= p×cos (a)×cos (b). Squaring both sides and replacing cos (a) by 1/sec (a) and cos (b) by 1/sec (b) we get: sin^2 (a+b) =p^2/(sec^2 (a)×sec^2 (b)). Now sec^2 (a)×sec^2 (b) = (1+tan^2 (a))(1+tan^2 (b))= 1+tan^2 (a)+tan^2 (b)+tan^2 (a)×tan^2 (b). Now: tan^2 (a)+tan^2 (b) =(tan (a)+tan (b))^2 - 2×tan (a)×tan (b)=p^2-2q and tan^2 a×tan^2 b=q^2. Therefore, sin^2 (a+b)=p^2/(1+p^2-2q+q^2) = p^2/(p^2+(1-q)^2).

Aareyan Manzoor
Jan 13, 2015

Start with vieta's tan a + tan b = p , tan a tan b = q \tan a +\tan b =p,\tan a \tan b =q use an identity tan ( a + b ) = tan a + tan b 1 tan a tan b \tan (a+b)=\dfrac{\tan a+\tan b}{1-\tan a \tan b} now, substitute from vieta's tan ( a + b ) = p 1 q a + b = tan 1 ( p 1 q ) \tan (a+b) = \dfrac{p}{1-q}\longrightarrow a+b=\tan^{-1}(\dfrac{p}{1-q}) now, get both sides in sin 2 \sin^2 sin 2 ( a + b ) = sin 2 ( tan 1 ( p 1 q ) \sin^2(a+b)=\sin^2(\tan^{-1}(\dfrac{p}{1-q}) use the identity sin 2 θ = 1 2 ( 1 cos 2 θ ) \sin^2 \theta =\dfrac{1}{2}(1-\cos 2\theta ) and we get sin 2 ( tan 1 ( p 1 q ) ) = 1 2 ( 1 cos ( 2 tan 1 ( p 1 q ) ) \sin^2(\tan^{-1}(\dfrac{p}{1-q}))=\dfrac{1}{2}(1-\cos (2\tan^{-1}(\dfrac{p}{1-q} )) use the identity cos ( 2 tan 1 θ ) = 1 θ 2 θ 2 + 1 \cos(2\tan^{-1}\theta)=\dfrac{1-\theta^2}{\theta^2+1} 1 2 ( 1 cos ( 2 tan 1 ( p 1 q ) ) = 1 2 ( 1 ( 1 ( p 1 q ) 2 1 + ( p 1 q ) 2 ) \dfrac{1}{2}(1-\cos (2\tan^{-1}(\dfrac{p}{1-q} ))=\dfrac{1}{2}(1-( \dfrac{1-(\dfrac{p}{1-q})^2}{1+(\dfrac{p}{1-q})^2}) upon some expansion, sin 2 ( a + b ) = p 2 p 2 + ( 1 q ) 2 \sin^2(a+b)=\boxed{\dfrac{p^2}{p^2+(1-q)^2}}

Nguyen Thanh Long
Jan 13, 2015

It is not reduced the generalization, can assume that P=3 and Q=2. So this equation has two roots: x 1 = 1 , x 2 = 2 x_1=1, x_2=2 Applying to this problem, it has: t a n ( A ) = 2 , t a n ( B ) = 1 s i n ( A ) = 2 c o s ( A ) , s i n ( B ) = c o s ( B ) tan(A)=2, tan(B)=1 \Rightarrow sin(A)=2cos(A), sin(B)=cos(B) c o s ( A ) = 1 5 , s i n ( A ) = 2 5 cos(A)=\frac{1}{\sqrt{5}}, sin(A)=\frac{2}{\sqrt{5}} c o s ( B ) = s i n ( A ) = 1 2 cos(B)=sin(A)=\frac{1}{\sqrt{2}} s i n ( A ) c o s ( B ) + s i n ( B ) c o s ( A ) = 3 10 sin(A)cos(B)+sin(B)cos(A)=\frac{3}{\sqrt{10}} s i n 2 ( A + B ) = P 2 P 2 + ( 1 Q ) 2 \Rightarrow sin^{2}(A+B)=\boxed{\frac{P^{2}}{P^{2}+(1-Q)^{2}}}

Kundan Patil
Jan 11, 2015

Tan(A+B) = Tan A + tan B /{1-tan A tanB}

But tanA +tanB = P ........TanA tanB = Q Frm here we get tan A+B Acc.to Mr , phythagoras

sinA+B get opt a

Incomplete solution?

Pranjal Jain - 6 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...