A geometry problem by Housam Kak

Geometry Level 3

A B C ABC is any triangle such that A B = 9 AB=9 and A C = 6 AC=6 and B A C = 6 0 \angle BAC=60^\circ .

Calculate the height [ A H ] [AH] issued from A A to B C BC .

Round the answer to the nearest digit.


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Housam Kak
Mar 24, 2016

Applying Pythagoras in any triangle we have B C 2 = A C 2 + A B 2 2 A B × A C × cos A BC^2=AC^2+AB^2-2AB\times AC\times \cos A implies that B C = 63 BC= \sqrt{63}

Using the rule A B × A C × cos ( 90 60 ) = A H × B C AB\times AC\times \cos(90-60)^\circ=AH\times BC SOLVE IT.

Hawraa Zm
Dec 3, 2017

BC^2=AB^2+AC^2-2 AB AC COS(60)=81+36-2 9 6 0.5=63 BC=3radical7 Let HC=x AH^2=AC^2-HC^2=36-x^2 AH^2=AB^2-HB^2=81-(3rad7-x)^2=18+(6rad7)x-x^2 Then 36-x^2=18+(6rad7)x-x^2 So x=(3rad7)/7;x^2=9/7 AH^2=36-9/7=243/7 AH=(9rad21)/7=5.8...=6

Y.R.S.A.A.P.M.L.R.B

Housam Kak - 3 years, 6 months ago

Log in to reply

M.S.M.L.M.H.B.H<3

Hawraa ZM - 3 years, 6 months ago

Log in to reply

Abyifhamosh lo8it internet fa b3sha2ik and it is simply geometric :)

Housam Kak - 3 years, 6 months ago

Area of triangle ABC is 1 2 a b sin 6 0 = 27 3 2 \frac{1}{2}ab\sin60^\circ=\frac{27\sqrt{3}}{2} B C = 9 2 + 6 2 2 × 9 × 6 × cos 6 0 = 63 BC = \sqrt{9^2+6^2-2\times9\times6\times\cos60^\circ}=\sqrt{63}

We know that B C × h ÷ 2 = 27 3 2 BC\times h\div2=\frac{27\sqrt{3}}{2} .Then we can solve to get 6.

Chew-Seong Cheong
Apr 15, 2016

Using cosine rule, we have:

B C 2 = A B 2 + A C 2 2 ( A B ) ( A C ) cos B A C = 9 2 + 6 2 2 ( 9 ) ( 6 ) cos 6 0 = 81 + 36 2 ( 9 ) ( 6 ) ( 1 2 ) = 63 B C = 3 7 \begin{aligned} BC^2 & = AB^2 + AC^2 - 2(AB)(AC)\cos \angle BAC \\ & = 9^2 + 6^2 - 2(9)(6) \cos 60^\circ \\ & = 81 + 36 - 2(9)(6) \left( \frac{1}{2}\right) \\ & = 63 \\ \Rightarrow BC & = 3\sqrt{7} \end{aligned}

Using sine rule, we have:

sin A B C A C = sin B A C B C sin B A C 6 = sin 6 0 3 7 sin B A C = 6 3 2 ( 3 7 ) = 3 7 \begin{aligned} \frac{\sin \angle ABC}{AC} & = \frac{\sin \angle BAC}{BC} \\ \frac{\sin \angle BAC}{6} & = \frac{\sin 60^\circ}{3\sqrt{7}} \\ \sin \angle BAC & = \frac{6 \sqrt{3}}{2(3 \sqrt{7})} = \sqrt{\frac{3}{7}} \end{aligned}

Now, we have [ A H ] = A B sin A B C = 9 × 3 7 = 5.8919 6 [AH] = AB \sin \angle ABC = 9 \times \sqrt{\frac{3}{7}} = 5.8919 \approx \boxed{6}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...