A geometry problem by Jus Jaisinghani

Geometry Level 4

4 cos 2 0 3 cot 2 0 = ? \large 4\cos20^\circ-\sqrt{3}\cot20^\circ= \, ?

Calculate the above without using a calculator.


The answer is -1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Jus Jaisinghani
Jul 7, 2016
  • 4 cos 2 0 3 cot 2 0 4\cos20^\circ-\sqrt{3}\cot20^\circ = 4 cos 2 0 4\cos20^\circ - 3 cos 2 0 s i n 2 0 \frac {\sqrt{3}\cos20^\circ}{sin20^\circ}
  • = 4 sin 2 0 cos 2 0 3 cos 2 0 sin 2 0 \frac{4\sin20^\circ \cos20^\circ-\sqrt{3}\cos20^\circ}{\sin20^\circ} = 2 sin 4 0 3 cos 2 0 sin 2 0 \frac{2\sin40^\circ-\sqrt{3}\cos20^\circ}{\sin20^\circ}
  • Now ,
  • sin 2 0 3 cos 2 0 = 2 ( cos 6 0 sin 2 0 sin 6 0 cos 2 0 ) = 2 sin 4 0 \sin20^\circ-\sqrt{3}\cos20^\circ=2\cdot(\cos60^\circ\sin20^\circ-\sin60^\circ\cos20^\circ)=-2\sin40^\circ
  • thus, sin 2 0 3 cos 2 0 = 2 sin 4 0 \sin20^\circ-\sqrt{3}\cos20^\circ=-2\sin40^\circ
  • 3 cos 2 0 = 2 sin 4 0 + s i n 2 0 \sqrt{3}\cos20^\circ=2\sin40^\circ+sin20^\circ

  • Substituting in above equation we get,

  • 4 cos 2 0 3 cot 2 0 4\cos20^\circ-\sqrt{3}\cot20^\circ = 2 sin 4 0 ( 2 sin 4 0 + s i n 2 0 ) sin 2 0 \frac{2\sin40^\circ-(2\sin40^\circ+sin20^\circ)}{\sin20^\circ}
  • = sin 2 0 sin 2 0 = 1 =\frac{-\sin20^\circ}{\sin20^\circ}=\boxed{-1}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...