Can I make more assumptions?

Geometry Level 3

Given that quadrilateral A B C D ABCD with side length A B = 4 , B C = 8 , C D = 3 AB=4, BC=8,CD=3 and angles B = C = 7 5 B=C=75^\circ , find the area of quadrilateral A B C D ABCD . Give your answer in unit squared.

Note: Figure not drawn up to scale.

5 7 + 3 5\sqrt { 7 } +3 7 6 + 7 2 3 7\sqrt { 6 } +7\sqrt { 2 } -3 22 3 5 + 2 7 1 3\sqrt { 5 } +2\sqrt { 7 } -1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Drop a perpendicular from A A to B C BC at point P . P. Next, drop a perpendicular from D D to B C BC at point Q . Q. Finally, draw a line parallel to B C BC through D , D, and let R R be the point of intersection of this line and A P . AP.

Then the area of the quadrilateral A B C D ABCD is the sum of the areas of triangles Δ A B P , Δ D Q C , Δ A R D \Delta ABP, \Delta DQC, \Delta ARD and the rectangle R P Q D . RPQD. Looking at these areas separately, we have:

(i) Area Δ A B P = 1 2 ( 4 sin ( 7 5 ) ) ( 4 cos ( 7 5 ) ) = 4 sin ( 15 0 ) = 2 \Delta ABP = \dfrac{1}{2}*(4\sin(75^{\circ}))(4\cos(75^{\circ})) = 4\sin(150^{\circ}) = 2

(ii) Area Δ D Q C = 1 2 ( 3 sin ( 7 5 ) ) ( 3 cos ( 7 5 ) ) = 9 4 sin ( 15 0 ) = 9 8 \Delta DQC = \dfrac{1}{2}(3\sin(75^{\circ}))(3\cos(75^{\circ})) = \dfrac{9}{4}\sin(150^{\circ}) = \dfrac{9}{8}

(iii) Area Δ A R D = 1 2 ( A R ) ( R D ) = 1 2 ( A R ) ( P Q ) = \Delta ARD = \dfrac{1}{2}(AR)(RD) = \dfrac{1}{2}(AR)(PQ) =

1 2 ( ( 4 3 ) sin ( 7 5 ) ) ( 8 ( 4 + 3 ) cos ( 7 5 ) ) = \dfrac{1}{2}((4 - 3)\sin(75^{\circ}))(8 - (4 + 3)\cos(75^{\circ})) =

1 2 ( 8 sin ( 7 5 ) 7 sin ( 7 5 ) cos ( 7 5 ) ) = \dfrac{1}{2}(8\sin(75^{\circ}) - 7\sin(75^{\circ})\cos(75^{\circ})) =

4 sin ( 7 5 ) 7 4 sin ( 15 0 ) = 4 sin ( 7 5 ) 7 8 4\sin(75^{\circ}) - \dfrac{7}{4}\sin(150^{\circ}) = 4\sin(75^{\circ}) - \dfrac{7}{8}

(iv) Area rectangle R P Q D = ( R P ) ( P Q ) = 3 sin ( 7 5 ) ( 8 7 cos ( 7 5 ) ) = RPQD = (RP)(PQ) = 3\sin(75^{\circ})(8 - 7\cos(75^{\circ})) =

24 sin ( 7 5 ) 21 2 sin ( 15 0 ) = 24 sin ( 7 5 ) 21 4 . 24\sin(75^{\circ}) - \dfrac{21}{2}\sin(150^{\circ}) = 24\sin(75^{\circ}) - \dfrac{21}{4}.

Adding these areas together gives us the area of A B C D ABCD to be

2 + 9 8 7 8 21 4 + 28 sin ( 7 5 ) = 28 sin ( 7 5 ) 3. 2 + \dfrac{9}{8} - \dfrac{7}{8} - \dfrac{21}{4} + 28\sin(75^{\circ}) = 28\sin(75^{\circ}) - 3.

Now sin ( 7 5 ) = sin ( 4 5 + 3 0 ) = 2 2 ( 1 2 + 3 2 ) = 2 + 6 4 . \sin(75^{\circ}) = \sin(45^{\circ} + 30^{\circ}) = \dfrac{\sqrt{2}}{2}\left(\dfrac{1}{2} + \dfrac{\sqrt{3}}{2}\right) = \dfrac{\sqrt{2} + \sqrt{6}}{4}.

Thus the final area calculation is 7 6 + 7 2 3 . \boxed{7\sqrt{6} + 7\sqrt{2} - 3}.

two Triangles and a trapezoid :) now you have it!

Eric Hammer
Jul 13, 2015

Extend lines AB and DC to intersect at point E. Find area of triangle EBC. Find area of triangle EAD. Subtract area of triangles EAD from EBC.

TADAAAA

Is harder than it sounds to get an exact value... but is fun

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...