Tedious?

Geometry Level 2

k = 1 50 [ ( 1 + tan ( k ) + sec ( k ) ) ( 1 + cot ( k ) csc ( k ) ) ] = ? \displaystyle \sum_{k=1}^{50} \Bigg [ \bigg(1 + \tan(k^\circ)+\sec(k^\circ)\bigg)\ \bigg(1+\cot(k^\circ)-\csc(k^\circ) \bigg)\Bigg]=\ ? \


The answer is 100.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

K. J. W.
May 24, 2015

Note that ( 1 + tan k ° + sec k ° ) ( 1 + cot k ° csc k ° ) = 1 cos k ° ( cos k ° + sin k ° + 1 ) 1 sin k ° ( sin k ° + cos k ° 1 ) = 1 cos k ° sin k ° [ ( sin k ° + cos k ° ) 2 1 2 ] = 1 cos k ° sin k ° ( sin 2 k ° + 2 cos k ° sin k ° + cos 2 k ° 1 ) = 1 cos k ° sin k ° ( 2 cos k ° sin k ° ) = 2 Sum = k = 1 50 2 = 100 . { (1+\tan k°+\sec k°)(1+\cot k°-\csc k°) }\\ =\dfrac { 1 }{ \cos k° } (\cos k°+\sin k°+1)\dfrac { 1 }{ \sin k° } (\sin k°+\cos k°-1)\\ =\dfrac { 1 }{ \cos k°\sin k° } \left[ { \left( \sin k°+\cos k° \right) }^{ 2 }-{ 1 }^{ 2 } \right] \\ =\dfrac { 1 }{ \cos k°\sin k° } (\sin ^{ 2 }{ k°+2\cos k°\sin k°+\cos ^{ 2 }{ k°-1) } } \\ =\dfrac { 1 }{ \cos k°\sin k° } (2\cos k°\sin k°)\\ =2\\ \therefore \quad \text{Sum}=\displaystyle \sum _{ k=1 }^{ 50 }{ 2 } =\boxed { 100 } .

Moderator note:

Nice. Bonus question: What would the answer be if I replace the number 50 50 by 100 100 ?

Actually there is no double angle formula involved.

Formulae involved: s i n ( k ° ) cos ( k ° ) = t a n ( k ° ) , sin 2 ( k ° ) + cos 2 ( k ° ) = 1 \frac { sin(k°) }{ \cos { (k°) } } =tan(k°),\quad \sin ^{ 2 }{ (k°)+\cos ^{ 2 }{ (k°)=1 } }

BTW, if 50 is replaced with 100, the answer would be undefined as t a n ( 90 ° ) tan(90°) is undefined and 90 is a term in the summation.

K. J. W. - 6 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...