A geometry problem by Kaushal Diwakar

Geometry Level 2

sin 2 0 × sin 4 0 × sin 6 0 × sin 8 0 = \sin 20 ^\circ \times \sin 40 ^\circ \times \sin 60 ^\circ \times \sin 80 ^\circ =

5/16 3/16 6/16 4/16

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mas Mus
Sep 13, 2015

sin 2 0 × sin 4 0 × sin 6 0 × sin 8 0 = 3 2 × sin 2 0 × cos 5 0 × cos 1 0 = 3 2 × sin 2 0 × 1 2 ( cos 6 0 + cos 4 0 ) = 3 8 × sin 2 0 + 3 4 × sin 2 0 × cos 4 0 = 3 8 × sin 2 0 + 3 8 ( sin 6 0 sin 2 0 ) = 3 16 \sin20^{\circ}\times{\sin40^{\circ}}\times{\sin60^{\circ}}\times{\sin80^{\circ}}=\frac{\sqrt{3}}{2}\times{\sin20^{\circ}}\times{\cos50^{\circ}}\times{\cos10^{\circ}}\\=\frac{\sqrt{3}}{2}\times{\sin20^{\circ}}\times{\frac{1}{2}}\left(\cos60^{\circ}+\cos40^{\circ}\right)=\frac{\sqrt{3}}{8}\times{\sin20^{\circ}}+\frac{\sqrt{3}}{4}\times{\sin20^{\circ}}\times{\cos40^{\circ}}\\=\frac{\sqrt{3}}{8}\times{\sin20^{\circ}}+\frac{\sqrt{3}}{8}\left(\sin60^{\circ}-\sin20^{\circ}\right) = \frac{3}{16}

Kaushal Diwakar
Feb 14, 2015

sin(20) sin(40) sin (60) sin (80) sin(60) = √3 /2

√3/2 [ sin(20) sin(40) sin(80) ]

= (√3/2) sin(20) [ sin(40) sin(80) ]

sin A sin B = (1/2) [ cos(A - B) - cos(A + B) ]

= √3/2 sin(20) (1/2)[ cos(40) - cos(120) ]

= √3/4 sin(20) [ cos(40) + cos(60) ]

= √3/4 sin(20) [ cos(40) + 1/2 ]

= √3/4 sin(20)cos(40) + (√3/8) sin(20)

sin A cos B = 1/2 [ sin(A + B) + sin(A - B) ]

= (√3/4)(1/2) [ sin(60) + sin(-20) ]+ (√3/8)sin(20)

= (√3/8) [ (√3 / 2) - sin(20) ]+ (√3/8)sin(20)

= 3/16 - (√3/8)sin(20) + (√3/8)sin(20)

= 3/16

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...