3 0 30^\circ Is Always Good

Geometry Level 4

A B = C D = 1 AB = CD = 1 , m A B C = 9 0 m\angle ABC = 90^\circ , m C B D = 3 0 m\angle CBD = 30^\circ . A A , C C , and D D , are collinear. A C AC can be represented in the simplest form as a 1 / b a^{1/b} , where a a and b b are positive integers such that a a is minimized. Find a + b a + b .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ahmad Saad
Jul 24, 2016

Relevant wiki: Similar Triangles - Problem Solving - Medium

We extend the straight line A B AB to the point E E such that the B A C B E D \triangle BAC \sim \triangle BED . Hence, like B A C \triangle BAC , the B E D \triangle BED is also a right triangle with B E D = 9 0 \angle BED = 90^\circ .

Let m m denote the distance A E AE , then cos ( E A D ) = A E A D cos ( 18 0 9 0 3 0 ) = m A D A D = 2 m \cos(\angle EAD) = \dfrac{AE}{AD} \Rightarrow \cos(180^\circ - 90^\circ - 30^\circ) = \dfrac m{AD} \Rightarrow AD = 2m .

By Pythagorean theorem , ( E D ) 2 = ( A D ) 2 ( A E ) 2 E D = 3 m (ED)^2 = (AD)^2 - (AE)^2 \Rightarrow ED = \sqrt 3 m .

Let A C = h , B C = x 1 2 + h 2 = x 2 AC = h, BC = x\Rightarrow 1^2 + h^2 = x^2 .

Since B A C B E D \triangle BAC \sim \triangle BED , then A B B E = B C B D 1 1 + m = x 1 + x = 1 1 + 1 / x m = 1 x \dfrac{AB}{BE} = \dfrac{BC}{BD} \Rightarrow \dfrac 1{1+m} = \dfrac x{1+x} = \dfrac1{1 + 1/x} \Rightarrow m = \dfrac1x .

Similarly, A C E D = B C B D h 3 m = x 1 + x \dfrac{AC}{ED} = \dfrac{BC}{BD} \Rightarrow \dfrac h{\sqrt3 m} = \dfrac x{1+x} . With m = 1 x m = \dfrac1x , then h = 3 1 + x h = \dfrac{\sqrt3}{1+x} .

Because 1 2 + h 2 = x 2 1^2 + h^2 = x^2 , then 1 + 3 ( 1 + x ) 2 = x 2 x 4 + 2 x 3 = 2 x + 4 ( x + 2 ) x 3 = 2 ( x + 2 ) x 3 = 2 x = 2 1 / 3 . 1 + \dfrac3{(1+x)^2} = x^2 \Rightarrow x^4 + 2x^3 = 2x + 4 \Rightarrow (x+2)x^3 = 2(x+2)\Rightarrow x^3 = 2 \Rightarrow \boxed{ x = 2^{1/3} }.

Let A C = x AC=x , B D = z BD=z and A C B = θ \angle ACB=\theta . Apply law of cosines on A B D \triangle ABD :

( x + 1 ) 2 = 1 + z 2 2 ( 1 ) ( z ) cos 12 0 x 2 + 2 x = z 2 + z (x+1)^2=1+z^2-2(1)(z)\cos 120^\circ \implies x^2+2x=z^2+z

Apply law of sines on A B C \triangle ABC :

sin θ = 1 x \sin \theta=\dfrac{1}{x}

Then on B C D \triangle BCD :

sin ( π θ ) sin 3 0 = z 1 sin θ = z 2 \dfrac{\sin(\pi-\theta)}{\sin 30^\circ}=\dfrac{z}{1} \implies \sin\theta=\dfrac{z}{2}

Then, z = 2 x z=\dfrac{2}{x} .

Combining both equations we get:

x 2 + 2 x = ( 2 x ) 2 + 2 x x^2+2x=\left(\dfrac{2}{x}\right)^2+\dfrac{2}{x}

x 4 + 2 x 3 2 x 4 = 0 ( x + 2 ) ( x 3 2 ) = 0 x^4+2x^3-2x-4=0 \implies (x+2)(x^3-2)=0 .

Finally, x = 2 3 \boxed{x=\sqrt[3]{2}} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...