A geometry problem by Madhavarapu Revanth

Geometry Level 3

In triangle ABC, B(1,2) , C(5,6) , and the internal angular bisector of angle A cuts BC at D(4,5) then AB:AC=x:y.Find x+y

4 -1 3 -2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Apr 19, 2015

Since B D B C = x D x B x C x B = 4 1 5 1 = 3 4 \dfrac {BD}{BC} = \dfrac {x_D-x_B}{x_C-x_B} = \dfrac {4-1}{5-1} = \dfrac {3}{4} , we find that B D : D C = 3 : 1 BD: DC = 3:1 .

Let A \angle A , B \angle B and C \angle C be α \alpha , β \beta and γ \gamma respectively. Using Sine Rule,

{ A B sin ( 18 0 α 2 β ) = x sin ( 18 0 α 2 β ) = 3 sin α 2 A C sin ( 18 0 α 2 γ ) = y sin ( 18 0 α 2 γ ) = 1 sin α 2 \begin{cases} \dfrac {AB}{\sin{\left( 180^\circ-\frac{\alpha}{2}-\beta \right)}} = \dfrac {x}{\sin{\left( 180^\circ-\frac{\alpha}{2}-\beta \right)}} = \dfrac {3}{\sin{\frac{\alpha}{2}}} \\ \dfrac {AC}{\sin{\left( 180^\circ-\frac{\alpha}{2}-\gamma \right)}} = \dfrac {y}{\sin{\left( 180^\circ-\frac{\alpha}{2}-\gamma \right)}} = \dfrac {1}{\sin{\frac{\alpha}{2}}}\end{cases}

But sin ( 18 0 α 2 β ) = sin ( 18 0 α 2 γ ) \sin{\left( 180^\circ-\frac{\alpha}{2}-\beta \right)} = \sin{\left( 180^\circ-\frac{\alpha}{2}-\gamma \right)}

x : y = 3 : 1 x + y = 4 \Rightarrow x:y = 3:1\quad \Rightarrow x+y = \boxed{4}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...