A geometry problem by A Former Brilliant Member

Geometry Level 3

The ratio of the interior angles of a triangle is 1 : 2 : 6 1:2:6 . If the perimeter of the triangle is 24 24 feet. Find the area of the triangle in square feet rounded to the nearest integer.


The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

The sum of interior angles of a triangle is 18 0 180^\circ . Since the ratio is 1 : 2 : 6 1:2:6 , the total is 1 + 2 + 6 = 9 1+2+6=9 , so the measure of the angles are 1 9 ( 180 ) = 2 0 \dfrac{1}{9}(180)=20^\circ , 2 9 ( 180 ) = 4 0 \dfrac{2}{9}(180)=40^\circ and 6 9 ( 180 ) = 12 0 \dfrac{6}{9}(180)=120^\circ . We let a a , b b and c c be the sides of the triangle. So, a + b + c = 24 a+b+c=24 . Then by sine law,

a s i n 120 = b s i n 40 = c s i n 20 \dfrac{a}{sin~120}=\dfrac{b}{sin~40}=\dfrac{c}{sin~20}

Adding the lengths of the three sides, we get

a + b + c = a + a s i n 40 s i n 120 + a s i n 20 s i n 120 = 24 a+b+c=a+a\dfrac{sin~40}{sin~120}+a\dfrac{sin~20}{sin~120}=24 \implies a = 11.22986673 a=11.22986673

It follows that,

b = 11.22986673 s i n 40 s i n 120 = 8.335112528 b=11.22986673\dfrac{sin~40}{sin~120}=8.335112528

Finally, the area of the triangle is

A = 1 2 a b s i n 20 = 1 2 ( 11.22986673 ) ( 8.335112528 ) ( s i n 20 ) = A=\dfrac{1}{2}ab~sin~20=\dfrac{1}{2}(11.22986673)(8.335112528)(sin~20)= 16 f t 2 \boxed{16~ft^2}

Chew-Seong Cheong
Apr 17, 2017

Let the angles of the triangle be A A , B B and C C , and their corresponding opposite sides be a a , b b and c c respectively. Further let A : B : C = 1 : 2 : 6 A : B:C = 1:2:6 . Since A + B + C = 18 0 A+B+C=180^\circ , A = 2 0 \implies A=20^\circ , B = 4 0 B =40^\circ and C = 12 0 C=120^\circ .

By sine rule , we have:

a sin 2 0 = b sin 4 0 = c sin 12 0 = k { a = k sin 2 0 b = k sin 4 0 c = k sin 12 0 \dfrac a{\sin 20^\circ} = \dfrac b{\sin 40^\circ} = \dfrac c{\sin 120^\circ} = k \implies \begin{cases} a = k \sin 20^\circ \\ b = k \sin 40^\circ \\ c = k \sin 120^\circ \end{cases}

a + b + c = k ( sin 2 0 + sin 4 0 + sin 12 0 ) = 24 \implies a+b+c = k (\sin 20^\circ + \sin 40^\circ + \sin 120^\circ) = 24 .

k = 24 sin 2 0 + sin 4 0 + sin 12 0 \implies k = \dfrac {24}{\sin 20^\circ + \sin 40^\circ + \sin 120^\circ}

Area of the triangle is given by:

A = 1 2 a b sin C = 1 2 k sin 2 0 k sin 4 0 sin 12 0 = 2 4 2 sin 2 0 sin 4 0 sin 12 0 2 ( sin 2 0 + sin 4 0 + sin 12 0 ) 2 = 16.007 16 \begin{aligned} A & = \frac 12 ab \sin C \\ & = \frac 12 \cdot k \sin 20^\circ \cdot k \sin 40^\circ \cdot \sin 120^\circ \\ & = \frac {24^2 \sin 20^\circ \sin 40^\circ \sin 120^\circ}{2(\sin 20^\circ + \sin 40^\circ + \sin 120^\circ)^2} \\ & = 16.007 \\ & \approx \boxed{16} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...