A line segment from a vertex to the opposite side

Geometry Level 3

In the triangle shown above, if C B = 4 CB=4 , C A = 5 CA=5 , B A = 6 BA=6 , and B E = 1 2 E A BE=\dfrac{1}{2}EA , find C E CE .

13 \sqrt{13} 10 \sqrt{10} 12 \sqrt{12} 11 \sqrt{11}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Relevant wiki: Stewart's Theorem

Roger Erisman
May 3, 2017

Apply Law of Cosines twice

5^2 = 4^2 + 6^2 - 2 X 4 X 6 X cos B

cos B = 0.5625

BE + EA = 6 : 1.5 EA = 6 : EA = 4 so BE = 2

CE^2 =4^2 + 2^2 - 2 X 4 X 2 X cosB = 11

CE = sqrt(11)

Using Heron's formula ,the area of A B C \triangle ABC is given by:

[ A B C ] = s ( s a ) ( s b ) ( s c ) where s = a + b + c + d 2 = 15 2 ( 15 2 4 ) ( 15 2 5 ) ( 15 2 6 ) = 15 2 ( 7 2 ) ( 5 2 ) ( 3 2 ) = 15 7 4 \begin{aligned} [ABC] & = \sqrt{s(s-a)(s-b)(s-c)} & \small \color{#3D99F6} \text{where }s = \frac {a+b+c+d}2 \\ & = \sqrt{\frac {15}2\left(\frac {15}2 - 4 \right)\left(\frac {15}2 - 5 \right)\left(\frac {15}2 - 6 \right)} \\ & = \sqrt{\frac {15}2\left(\frac 72\right)\left(\frac 52 \right)\left(\frac 32 \right)} \\ & = \frac {15\sqrt 7}4 \end{aligned}

Let C F CF the altitude from C C to A B AB and its length h h and E F = x EF=x . Then, we have:

1 2 × A B × C F = [ A B C ] 6 h 2 = 15 7 4 h = 5 7 4 \begin{aligned} \frac 12 \times AB \times CF & = [ABC] \\ \frac {6h}2 & = \frac {15\sqrt 7}4 \\ \implies h & = \frac {5\sqrt 7}4 \end{aligned}

By Pythagorean theorem , we have:

B F 2 = B C 2 C F 2 ( x + 2 ) 2 = 4 2 ( 5 7 4 ) 2 = 81 16 Note that B E = E A 2 = A B 3 = 2 x = 1 4 \begin{aligned} BF^2 & = BC^2-CF^2 \\ (x+{\color{#3D99F6}2})^2 & = 4^2 - \left(\frac {5\sqrt 7}4\right)^2 = \frac {81}{16} & \small \color{#3D99F6} \text{Note that }BE = \frac {EA}2 = \frac {AB}3 = 2 \\ \implies x & = \frac 14 \end{aligned}

By Pythagorean theorem, we have:

C E 2 = C F 2 + E F 2 = ( 15 7 4 ) 2 + ( 1 4 ) 2 = 11 C E = 11 \begin{aligned} CE^2 & = CF^2+EF^2 = \left(\frac {15\sqrt 7}4\right)^2 + \left(\frac 14\right)^2 = 11 \\ \implies CE & = \boxed{\sqrt{11}} \end{aligned}

Ahmad Saad
May 2, 2017

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...