Solving right triangles

Geometry Level 2

A right triangle has a perimeter of 30 and the sum of the squares of the sides is 338. Find the length of the shortest side.


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let the two legs be a a and b b , and the hypotenuse be c c . By pythagorean theorem , we have

c 2 = a 2 + b 2 c^2=a^2+b^2

Thus,

a 2 + b 2 + c 2 = 338 a^2+b^2+c^2=338

c 2 + c 2 = 338 c^2+c^2=338

2 c 2 = 338 2c^2=338

c 2 = 169 c^2=169

c = 13 c=13

From a + b + c = 30 a+b+c=30 ,

a = 30 b c a=30-b-c

a = 30 b 13 a=30-b-13

a = 17 b a=17-b

Substituting, we get

a 2 + b 2 + c 2 = 338 a^2+b^2+c^2=338

( 17 b ) 2 + b 2 + 169 = 338 (17-b)^2+b^2+169=338

289 34 b + b 2 + b 2 + 169 = 338 289-34b+b^2+b^2+169=338

b 2 17 b + 60 = 0 b^2-17b+60=0

( b 12 ) ( b 5 ) = 0 (b-12)(b-5)=0

b 12 = 0 b-12=0

b = 12 b=12

b 5 = 0 b-5=0

b = 5 b=5

Therefore, b b can either be 12 12 or 5 5 . Accordingly, a a can be either 12 12 or 5 5 .

Thus, the length of the smallest side is 5 5 .

Conclusion: The right triangle is 5 12 13 5-12-13 right triangle.

VERy nice solution.

Ramiel To-ong - 4 years ago

The problem does not specify that the solution is over the integers or even positive values. But, in fact, the only non-complex solution of: Solve [ x + y + z = 30 x 2 + y 2 + z 2 = 338 x 2 + y 2 = z 2 , { x , y , z } ] \text{Solve}\left[x+y+z=30\land x^2+y^2+z^2=338\land x^2+y^2=z^2,\{x,y,z\}\right] where the third constraint comes from the right triangle specification gives the ( 5 , 12 , 13 ) (5, 12, 13) solution.

The full solution set is { { x 5. , y 12. , z 13. } , { x 12. , y 5. , z 13. } , { x 21.5 19.4358 i , y 21.5 + 19.4358 i , z 13. } , { x 21.5 + 19.4358 i , y 21.5 19.4358 i , z 13. } } \{\{x\to 5.,y\to 12.,z\to 13.\},\{x\to 12.,y\to 5.,z\to 13.\}, \\ \{x\to 21.5\, -19.4358 i,y\to 21.5\, +19.4358 i,z\to -13.\}, \\ \{x\to 21.5\, +19.4358 i,y\to 21.5\, -19.4358 i,z\to -13.\}\}

If the right triangle constraint is removed, then there is a smaller solution: 2 3 ( 15 57 ) \frac{2}{3} \left(15-\sqrt{57}\right) or about 4.96677704315 4.96677704315 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...