A geometry problem by A Former Brilliant Member

Geometry Level 2

If cos θ = 3 2 \cos \theta=\dfrac{\sqrt{3}}{2} , then find the value of x x if x = 1 tan 2 θ x=1-\tan^2 \theta .

2 3 \dfrac{2}{3} 1 3 -\dfrac{1}{3} 3 2 \dfrac{3}{2} 1 3 \dfrac{1}{3}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Relevant wiki: Proving Trigonometric Identites

If c o s θ = 3 2 cos \theta=\dfrac{\sqrt{3}}{2} , then sec θ = 2 3 \sec \theta=\dfrac{2}{\sqrt{3}} .

x = 1 tan 2 θ x=1-\tan^2 \theta , however, tan 2 θ = sec 2 θ 1 \tan^2 \theta=\sec^2 \theta - 1 , therefore

x = 1 ( sec 2 θ 1 ) = 1 sec 2 θ + 1 = 2 sec 2 θ x=1-(\sec^2 \theta - 1)=1-\sec^2 \theta +1=2-\sec^2 \theta , however, sec θ = 2 3 \sec \theta=\dfrac{2}{\sqrt{3}} , therefore

x = 2 sec 2 θ = 2 ( 2 3 ) 2 = 2 4 3 = 6 3 4 3 = x=2-\sec^2 \theta=2-\left(\dfrac{2}{\sqrt{3}}\right)^2=2-\dfrac{4}{3}=\dfrac{6}{3}-\dfrac{4}{3}= 2 3 \boxed{\dfrac{2}{3}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...