A geometry problem by Mehul Chaturvedi

Geometry Level 3

F i n d c o s 2 A + c o s 2 ( A + 120 ) + c o s 2 ( A 120 ) Find\\ { cos }^{ 2 }A+{ cos }^{ 2 }(A+120)+{ cos }^{ 2 }(A-120)


The answer is 1.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Jaiveer Shekhawat
Oct 10, 2014

c o s 2 A cos^{2}A + c o s 2 ( A + 120 ) cos^{2}(A+120) + c o s 2 ( A 120 ) cos^{2}(A-120)

= c o s 2 A cos^{2}A + ( c o s A c o s 120 s i n A s i n 120 ) 2 (cosAcos120-sinAsin120)^{2} + ( c o s A c o s 120 + s i n A s i n 120 ) 2 (cosAcos120+sinAsin120)^{2}

= c o s 2 A cos^{2}A + ( c o s A c o s ( 90 + 30 ) s i n A s i n ( 180 60 ) ) 2 (cosAcos(90+30)-sinAsin(180-60))^{2} + ( c o s A c o s ( 90 + 30 ) + s i n A s i n ( 180 60 ) ) 2 (cosAcos(90+30)+sinAsin(180-60))^{2}

= c o s 2 A cos^{2}A + ( c o s A s i n 30 s i n A s i n 60 ) 2 (-cosAsin30 - sinAsin60)^{2} + ( c o s A s i n 30 + s i n A s i n 60 ) 2 (-cosAsin30 + sinAsin60)^{2}

= c o s 2 A cos^{2}A + ( c o s A s i n 30 ) 2 (cosAsin30)^{2} -2(-cosAsin30)(sinAsin60) + ( s i n A s i n 60 ) 2 sinAsin60)^{2} + ( c o s A s i n 30 ) 2 (cosAsin30)^{2} +2(-cosAsin30)(sinAsin60) + ( s i n A s i n 60 ) 2 sinAsin60)^{2}

= c o s 2 A cos^{2}A + ( c o s A s i n 30 ) 2 (cosAsin30)^{2} + s i n A s i n 60 ) 2 sinAsin60)^{2} + ( c o s A s i n 30 ) 2 (cosAsin30)^{2} + ( s i n A s i n 60 ) 2 sinAsin60)^{2}

= c o s 2 A cos^{2}A + 2. c o s 2 A cos^{2}A . 1 4 \frac{1}{4} + 2. s i n 2 A sin^{2}A . 3 4 \frac{3}{4}

= c o s 2 A cos^{2}A + c o s 2 A cos^{2}A . 1 2 \frac{1}{2} + ( 1 c o s 2 A 1-cos^{2}A ). 3 2 \frac{3}{2}

=2. 1 2 \frac{1}{2} c o s 2 A cos^{2}A + c o s 2 A cos^{2}A . 1 2 \frac{1}{2} + 3 2 \frac{3}{2} + c o s 2 A -cos^{2}A . 3 2 \frac{3}{2}

= c o s 2 A cos^{2}A . 3 2 \frac{3}{2} + c o s 2 A -cos^{2}A . 3 2 \frac{3}{2} + 3 2 \frac{3}{2}

= 3 2 \frac{3}{2}

= 1.5 \boxed{1.5}

I have explained each step one by one for reader's comfort!

jaiveer shekhawat - 6 years, 8 months ago

easy solution----= check for A=0

James Villanueva
Oct 13, 2014

c o s 2 A + c o s 2 ( A + 120 ) + c o s 2 ( A 120 ) cos^2A+cos^2(A+120)+cos^2(A-120)

= c o s 2 A + [ c o s ( A + 120 ) + c o s ( A 120 ) ] 2 2 c o s ( A + 120 ) c o s ( A 120 ) =cos^2A+[cos(A+120)+cos(A-120)]^2-2cos(A+120)cos(A-120)

Now using the sum to product identity in the second term and the product to sum identity in the third term, we get:

= c o s 2 A + ( 2 c o s [ ( A + 120 ) + ( A 120 ) 2 ] c o s [ ( A + 120 ) ( A 120 ) 2 ] ) 2 2 ( c o s [ ( A + 120 ) + ( A 120 ) ] + c o s [ ( A + 120 ) ( A 120 ) ] 2 ) =cos^2A+\left(2cos \left[\frac{(A+120)+(A-120)}{2}\right] cos \left[\frac{(A+120)-(A-120)}{2}\right]\right)^2-2 \left(\frac{cos[(A+120)+(A-120)]+cos[(A+120)-(A-120)]}{2}\right)

Simplifying the angles of each cosine:

= c o s 2 A + ( 2 c o s A c o s 120 ) 2 [ c o s ( 2 A ) + c o s 240 ] =cos^2A+\left(2cosAcos120 \right)^2-[cos(2A)+cos240]

Solving the square in the second term and distributing the minus over the third term:

= c o s 2 A + c o s 2 A c o s ( 2 A ) c o s 240 =cos^2A+cos^2A-cos(2A)-cos240

Using the double angle identity for cosine:

= 2 c o s 2 A ( c o s 2 A s i n 2 A ) ( 1 2 ) =2cos^2A-(cos^2A - sin^2A)-\left (-\displaystyle \frac{1}{2} \right)

Combininig like terms:

= c o s 2 A + s i n 2 A + 1 2 =cos^2A+sin^2A+\displaystyle \frac{1}{2}

Using the pythagorean identity:

= 1 + 1 2 =1+\displaystyle \frac{1}{2}

Solving the operations:

= 3 2 =\displaystyle \frac{3}{2}

= 1.5 =\boxed{1.5}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...