F i n d c o s 2 A + c o s 2 ( A + 1 2 0 ) + c o s 2 ( A − 1 2 0 )
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
I have explained each step one by one for reader's comfort!
easy solution----= check for A=0
c o s 2 A + c o s 2 ( A + 1 2 0 ) + c o s 2 ( A − 1 2 0 )
= c o s 2 A + [ c o s ( A + 1 2 0 ) + c o s ( A − 1 2 0 ) ] 2 − 2 c o s ( A + 1 2 0 ) c o s ( A − 1 2 0 )
Now using the sum to product identity in the second term and the product to sum identity in the third term, we get:
= c o s 2 A + ( 2 c o s [ 2 ( A + 1 2 0 ) + ( A − 1 2 0 ) ] c o s [ 2 ( A + 1 2 0 ) − ( A − 1 2 0 ) ] ) 2 − 2 ( 2 c o s [ ( A + 1 2 0 ) + ( A − 1 2 0 ) ] + c o s [ ( A + 1 2 0 ) − ( A − 1 2 0 ) ] )
Simplifying the angles of each cosine:
= c o s 2 A + ( 2 c o s A c o s 1 2 0 ) 2 − [ c o s ( 2 A ) + c o s 2 4 0 ]
Solving the square in the second term and distributing the minus over the third term:
= c o s 2 A + c o s 2 A − c o s ( 2 A ) − c o s 2 4 0
Using the double angle identity for cosine:
= 2 c o s 2 A − ( c o s 2 A − s i n 2 A ) − ( − 2 1 )
Combininig like terms:
= c o s 2 A + s i n 2 A + 2 1
Using the pythagorean identity:
= 1 + 2 1
Solving the operations:
= 2 3
= 1 . 5
Problem Loading...
Note Loading...
Set Loading...
c o s 2 A + c o s 2 ( A + 1 2 0 ) + c o s 2 ( A − 1 2 0 )
= c o s 2 A + ( c o s A c o s 1 2 0 − s i n A s i n 1 2 0 ) 2 + ( c o s A c o s 1 2 0 + s i n A s i n 1 2 0 ) 2
= c o s 2 A + ( c o s A c o s ( 9 0 + 3 0 ) − s i n A s i n ( 1 8 0 − 6 0 ) ) 2 + ( c o s A c o s ( 9 0 + 3 0 ) + s i n A s i n ( 1 8 0 − 6 0 ) ) 2
= c o s 2 A + ( − c o s A s i n 3 0 − s i n A s i n 6 0 ) 2 + ( − c o s A s i n 3 0 + s i n A s i n 6 0 ) 2
= c o s 2 A + ( c o s A s i n 3 0 ) 2 -2(-cosAsin30)(sinAsin60) + ( s i n A s i n 6 0 ) 2 + ( c o s A s i n 3 0 ) 2 +2(-cosAsin30)(sinAsin60) + ( s i n A s i n 6 0 ) 2
= c o s 2 A + ( c o s A s i n 3 0 ) 2 + s i n A s i n 6 0 ) 2 + ( c o s A s i n 3 0 ) 2 + ( s i n A s i n 6 0 ) 2
= c o s 2 A + 2. c o s 2 A . 4 1 + 2. s i n 2 A . 4 3
= c o s 2 A + c o s 2 A . 2 1 + ( 1 − c o s 2 A ). 2 3
=2. 2 1 c o s 2 A + c o s 2 A . 2 1 + 2 3 + − c o s 2 A . 2 3
= c o s 2 A . 2 3 + − c o s 2 A . 2 3 + 2 3
= 2 3
= 1 . 5