A geometry problem by Mohammad Hamdar

Geometry Level 5

Consider a circle C C with center O O and radius R = 3 R=3 . A B C ABC is a triangle inscribed in C C such that B C = 5 BC = 5 and A B C = 6 0 \angle ABC = 60^\circ .

Given that the area of the triangle A B C ABC is equal to a b ( a + c ) d \dfrac{a\sqrt b(a + \sqrt c)}d , where a , b , c a,b,c and d d are positive integers with b , c b,c square-free and d d minimized. Find a + b + c + d a+b+c+d .


The answer is 49.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Reineir Duran
Mar 28, 2016

Here, 6 6 is equal to the diameter of the circle: 5 sin A = 6 sin A = 5 6 . \dfrac{5}{\sin A} = 6 \Longrightarrow \sin A = \dfrac{5}{6}. By sine law, A C sin 6 0 = 5 sin A = 6 A C = 3 3 . \dfrac{AC}{\sin 60^{\circ}} = \dfrac{5}{\sin A} = 6 \Longrightarrow AC = 3\sqrt{3}. Now, C = 18 0 ( 6 0 + sin 1 ( 5 6 ) ) = 12 0 sin 1 ( 5 6 ) . \begin{aligned} \angle C &= 180^{\circ} - \left(60^{\circ} + \sin^{-1} \left(\dfrac{5}{6}\right)\right) \\ &= 120^{\circ} - \sin^{-1} \left(\dfrac{5}{6}\right).\end{aligned} And, sin C = ( 3 2 ) ( cos ( sin 1 ( 5 6 ) ) ) ( 1 2 ) ( 5 6 ) = ( 3 2 ) ( ± 11 6 ) ( 1 2 ) ( 5 6 ) = ± 33 + 5 12 . \begin{aligned} \sin C &= \left(\dfrac{\sqrt{3}}{2}\right)\left(\cos\left(\sin^{-1} \left(\dfrac{5}{6}\right)\right)\right) - \left(-\dfrac{1}{2}\right)\left(\dfrac{5}{6}\right) \\ &= \left(\dfrac{\sqrt{3}}{2}\right)\left(\pm\dfrac{\sqrt{11}}{6}\right) - \left(-\dfrac{1}{2}\right)\left(\dfrac{5}{6}\right) \\ &= \dfrac{\pm\sqrt{33} + 5}{12}. \end{aligned} So we take the positive one. Thus, the area of A B C \triangle ABC is 1 2 ( 3 3 ) ( 5 ) ( 33 + 5 12 ) = 5 3 ( 5 + 33 ) 8 . \dfrac{1}{2}\left(3\sqrt{3}\right)\left(5\right)\left(\dfrac{\sqrt{33} + 5}{12}\right) = \dfrac{5\sqrt{3}\left(5 + \sqrt{33}\right)}{8}. Finally, we get a + b + c + d a + b + c + d which is 49 \boxed{49} .

Note:

cos ( sin 1 ( 5 6 ) ) = ± 1 sin 2 ( sin 1 ( 5 6 ) ) = ± 1 ( 5 6 ) 2 = ± 11 6 \begin{aligned} \cos\left(\sin^{-1}\left(\dfrac{5}{6}\right)\right) &= \pm\sqrt{1 - \sin^2\left(\sin^{-1}\left(\dfrac{5}{6}\right)\right)} \\ &= \pm\sqrt{1 - \left(\dfrac{5}{6}\right)^2} \\ &= \pm\dfrac{\sqrt{11}}{6} \end{aligned}

Nice solution but you can use cosine rule after you finish the sin rule,don't need to bother about inverse trigonal function.

沂泓 纪 - 5 years, 2 months ago

Let O be the center of the circle, and O C B = X . C o s X = 5 2 3 = 5 6 , a n d S i n X = 11 6 . S i n c e ABC=60, tangent at C makes 60 with AC , so angle OCA= 90 - 60 = 30 and angle BCA=X+30. A C = 2 ( 3 C o s 30 ) = 6 3 2 = 3 3 . A r e a Δ A B C = 1 2 A C B C S i n B C A = 1 2 5 3 3 S i n B C A , E x p a n d i n g S i n , A r e a Δ A B C = 1 2 5 3 3 ( 11 6 3 2 + 5 6 1 2 ) A r e a Δ A B C = 5 3 ( 33 + 5 ) 8 a + b + c + d = 5 + 3 + 33 + 8 = 49. \text{Let O be the center of the circle, and} \ \angle\ OCB=X.\\ \therefore\ \color{#3D99F6}{ CosX=\dfrac{\frac 5 2} 3=\dfrac 5 6,\ and \ SinX=\dfrac{\sqrt{11}} 6. }\\ Since\ \angle \text{ ABC=60, tangent at C makes 60 with AC ,} \\ \text{so angle OCA= 90 - 60 = 30 and angle BCA=X+30. }\\ AC=2 *( 3 * Cos30)=\dfrac{6\sqrt3} 2=3\sqrt3.\\ Area\ \Delta\ ABC=\frac 1 2*AC*BC*SinBCA=\frac 1 2*5*3\sqrt3*SinBCA,\ \ \ \ \ Expanding\ \ Sin,\\ Area\ \Delta\ ABC=\frac 1 2*5*3\sqrt3* \left( \dfrac{\sqrt{11}} 6*\dfrac{\sqrt3} 2+\dfrac 5 6*\dfrac 1 2 \right )\\ Area\ \Delta\ ABC=\dfrac{5\sqrt3(\sqrt{33}+5)} 8 \ \\ \therefore a+b+c+d= 5+3+33+8=49.

Aakash Khandelwal
Mar 30, 2016

Write R = a b c / 4 R=abc/4\triangle , where \triangle represent area of Triangle.

a = 5 a=5 .............. g i v e n given

Using this we get area of triangle , = 5 b c / 12 \triangle = 5bc/12 , under usual notations. ......... e q n 1 eq^{n} 1

Since b = 2 R s i n B = 3 3 b=2R sinB = 3\sqrt{3} , by extended sine rule.

Now using Cosine rule for angle B B , and putting values of a & b we get

c c = 5 + 33 / 2 5+\sqrt{33}/2

Now putting it in equation 1, We get

= 5 3 ( 5 + 33 ) / 8 \triangle= 5\sqrt{3}(5+\sqrt{33})/8 .

Hence by comparing we get

a + b + c + d = 49 a+b+c+d= \boxed{\boxed{49}}

Note : Sine Rule (extended) a / s i n A = b / s i n B = c / s i n C = 2 R a/sinA = b/sinB = c/sinC = 2R

Cosine rule :

c o s A = b 2 + c 2 a 2 / 2 b c cosA= b^{2} + c^{2} -a^{2} /2bc

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...